
Constraint Solving - Global Constraints (1)

Traveling Salesperson (TSP)

The TSP problem consists of finding the shortest tour required for a salesman to visit all cities,

without visiting any city twice, and returning to the starting city. More formally, considering

the graph G = (N,E) where N is the set of k nodes (corresponding to the cities) and E the set of

edges between the nodes labelled with their costs (distances in this case), the TSP problem

consists of finding the Hamiltonian cycle in the graph G with lowest cost.

Rank: Model (and solve) the problem with array rank[0..k-1] of decision variables, where

rank[i] represents the ith city to be visited in the tour. For example,

rank = [0,4,1,5,6,3,2] represents the tour 0→ 4 → 1 → 5 → 6 → 3 → 2 → 0

Next: Solve the problem with an alternative model using an array next[1..k] of decision

variables, where next[i] represents the city that follows city i in the tour. The above

solution is now represented by next = [4,5,0,2,1,6,3].

In both the above models use when convenient global constraints, namely alldifferent, circuit

and element as available in Choco.

Also impose, if necessary, symmetry breaking constraints to guarantee that the tour starts in

city 0. Which of the models is more efficient?

Testing / Benchmarks:

For both models, extend the file tsp_aula.java, available in the solutions, that includes an

adjacency matrix of a graph with 15 nodes.

You may consider other graphs, e.g. from files bavariaNN.txt, where the above graph was

extracted (bavaria15.txt, below).

15
 0 107 241 190 124 80 316 76 152 157 283 133 113 297 228
 107 0 148 137 88 127 336 183 134 95 254 180 101 234 175
 241 148 0 374 171 259 509 317 217 232 491 312 280 391 412
 190 137 374 0 202 234 222 192 248 42 117 287 79 107 38
 124 88 171 202 0 61 392 202 46 160 319 112 163 322 240
 80 127 259 234 61 0 386 141 72 167 351 55 157 331 272
 316 336 509 222 392 386 0 233 438 254 202 439 235 254 210
 76 183 317 192 202 141 233 0 213 188 272 193 131 302 233
 152 134 217 248 46 72 438 213 0 206 365 89 209 368 286
 157 95 232 42 160 167 254 188 206 0 159 220 57 149 80
 283 254 491 117 319 351 202 272 365 159 0 404 176 106 79
 133 180 312 287 112 55 439 193 89 220 404 0 210 384 325
 113 101 280 79 163 157 235 131 209 57 176 210 0 186 117
 297 234 391 107 322 331 254 302 368 149 106 384 186 0 69
 228 175 412 38 240 272 210 233 286 80 79 325 117 69 0

To read a data file with integers with the format above, use the class graph.java that is available

in the web page (note: adapt, if necessary, the path for the file to be read).

 † Source: http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/

 benchmark: bayg29.tsp.gz

http://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/tsp/bayg29.tsp.gz

