
Search Strategies for Rectangle Packing

Helmut Simonis and Barry O’Sullivan

Cork Constraint Computation Centre
Department of Computer Science, University College Cork, Ireland

{h.simonis|b.osullivan}@4c.ucc.ie

Abstract. Rectangle (square) packing problems involve packing all squares with
sizes 1 × 1 to n × n into the minimum area enclosing rectangle (respectively,
square). Rectangle packing is a variant of an important problem in a variety of
real-world settings. For example, in electronic design automation, the packing of
blocks into a circuit layout is essentially a rectangle packing problem. Rectangle
packing problems are also motivated by applications in scheduling. In this paper
we demonstrate that an “off-the-shelf” constraint programming system, SICStus
Prolog, outperforms recently developed ad-hoc approaches by over three orders
of magnitude. We adopt the standard CP model for these problems, and study a
variety of search strategies and improvements to solve large rectangle packing
problems. As well as being over three orders of magnitude faster than the current
state-of-the-art, we close eight open problems: two rectangle packing problems
and six square packing problems. Our approach has other advantages over the
state-of-the-art, such as being trivially modifiable to exploit multi-core comput-
ing platforms to parallelise search, although we use only a single-core in our
experiments. We argue that rectangle packing is a domain where constraint pro-
gramming significantly outperforms hand-crafted ad-hoc systems developed for
this problem. This provides the CP community with a convincing success story.

1 Introduction

Rectangle (square) packing problems involve packing all squares with sizes 1 × 1 to
n × n into an enclosing rectangle (square) of minimum area. Rectangle packing is an
important problem in a variety of real-world settings. For example, in electronic de-
sign automation, the packing of blocks into a circuit layout is essentially a rectangle
packing problem [12, 14]. Rectangle packing problems are also motivated by applica-
tions in scheduling [10, 11, 13]. Rectangle packing is an important application domain
for constraint programming, with significant research into improved constraint propa-
gation methods reported in the literature [1–7, 15].

The objective of this paper was to demonstrate that a current “off-the-shelf” con-
straint programming system, in our case SICStus Prolog [8], is competitive with the
hand-crafted ad-hoc solutions to rectangle packing that have been reported in the lit-
erature. Our methodology was to consider the standard formulation of the rectangle
packing problem, and study the performance of SICStus Prolog using several appropri-
ate search strategies that we explore in this paper. We have developed no new constraint
programming technology, such as ad-hoc global constraints, restricting ourselves en-
tirely to the facilities provided by the standard solver. The surprising, but extremely



encouraging, result is that rather than being simply competitive on this problem class,
SICStus Prolog outperforms recently developed ad-hoc approaches [10, 11, 13] by over
three orders of magnitude. In addition, we close eight open problems in this area: two
rectangle packing problems and six square packing problems. Therefore, we claim that
rectangle (square) packing provides the CP community with a convincing success story.

We consider rectangle packing to be more attractive benchmark for general place-
ment problems than the perfect square placement problems considered in [1–7, 15] for
several reasons. Firstly, the perfect square placement problem contains no wasted space
(slack), a situation rarely found in practical problems. It is tempting to improve the
reasoning for this special case [3], while most practical problems obtain little benefit
from such reasoning. Secondly, by providing a single parameter n, it is easy to create
increasingly more complex problems. Note though, that problem complexity does not
necessarily increase directly with problem size, as the amount of unused space varies
with problem size. Thirdly, for the specific case of rectangle packing, we may choose to
solve the problem by testing different combinations of the width and height of candidate
rectangles, each with different slack values. This nicely tests the generality of a search
method. Finally, for some candidate rectangle sizes, there is no solution that packs all
n rectangles into the candidate solution, although the simple lower bounds on required
area are satisfied. This means that the proof of optimality for these cases is non-trivial,
and may require significant enumeration.

Our future work is to develop a fully constraint-based solution to circuit placement
and routing where we pack the blocks of a circuit into a bounding rectangle such that
the linear sum of the rectangle area and the total length of wiring is minimised. This is
an extremely important problem in electronic design automation [14].

2 Constraint Programming Model

We use the established constraint model [2, 4] for the rectangle packing problem. Each
item to be placed is defined by domain variables X and Y for the origin in the x and y
dimension respectively, and two integer constants W and H for the width and the height
of the rectangle, respectively. In the particular case of packing squares, W and H are
identical. The constraints are expressed by a non-overlapping constraint in two dimen-
sions and two (redundant) CUMULATIVE constraints that work on the projection of the
packing problem in x or y direction. This is illustrated by Figure 1. We use SICStus
Prolog 4.0.2, which provides both CUMULATIVE [1] and DISJOINT2 [5] constraints.

2.1 Problem Decomposition

To find the enclosing rectangle with smallest area, we need a decomposition strategy
that generates sub-problems with fixed enclosing rectangle sizes. We enumerate on de-
mand all pairs Width, Height in order of increasing area Width× Height that satisfy

[Width,Height] :: n..∞,Width ≥ Height

n∑
i=1

i2 ≤ Width ∗ Height



DISJOINT2

CUMULATIVE

CUMULATIVE

X,Y

W
H

Width

Height

Fig. 1. The basic constraint programming model.

k =
⌊
Height+ 1

2

⌋
,Width ≥

n∑
j=k

j (1)

Equation 1 provides a simple bound on the required area, considering all large
squares that cannot be stacked on top of each other, which, thus, must fit horizontally.
For solutions with the same area, we try them by increasing Height, i.e. for two solu-
tions with the same surface we try the “less square-like” solution first. We then solve the
rectangle packing problem for each such rectangle in turn, until we find the first feasible
solution. By construction, this is an optimal solution. The number of candidates seems
to grow linearly with the amount of slack allowed.

Figure 2 shows possible candidate rectangles for n = 26. The diagram plots surface
area on the x-axis, and height of the rectangle on the y-axis. The lower bound (LB) is
marked by a line on the left, the optimal solution is marked by the label Optimal. We
also show an arrow between two rectangles R1 and R2 if one subsumes the other, i.e.
W1 ≤ W2, H1 ≤ H2. Unfortunately, none of the candidates to the left of the optimal
solution subsumes another, we therefore have to check each candidate individually.

Note that this decomposition approach differs from both [11] and [13]. Moffit and
Pollack do not impose a-priori limits on the rectangle to be filled, while Korf builds
solutions starting from an initial wide rectangle. Both methods are anytime algorithms,
while our method is not. Whether this distinction is important will depend on the in-
tended application. Korf will have to show infeasibility of the same or larger, more
difficult rectangles to prove optimality, while the search space for Moffit and Pollack
looks very different. An advantage of our method is it can be trivially extended to mul-
tiple processor cores by exploring candidates in parallel. Korf’s method is inherently
sequential. A more fine grain parallelization can be applied to both Moffit’s and our
approach by unfolding the top choices in the search tree to run as different processes.

2.2 Symmetry Removal

The model so far contains a number of symmetries, which we need to remove as we
may have to explore the complete search space. We restrict the domain of the largest



35

40

45

50

55

60

65

70

75

80

6200 6220 6240 6260 6280 6300 6320 6340 6360 6380 6400

H
ei

gh
t

Surface

Optimal

LB UB

Fig. 2. Candidate plot for n = 26.

square of size n × n to be placed in an enclosing rectangle of size Width × Height to

X :: 1..1 +
⌊

Width − n

2

⌋
, Y :: 1..1 +

⌊
Height− n

2

⌋
.

For the square packing problem we can apply a slightly stronger restriction, due to the
increased number of symmetries. For an enclosing square of size Size × Size we use the
following restriction for the largest square to be placed

X :: 1..1 +
⌊

Size − n

2

⌋
, Y ≤ X.

3 Search Strategies

For finite domain constraint problems, the choice of a search strategy usually follows
naturally from the model. We first need to decide which variables to enumerate (model),
we then have to consider the order in which they are assigned (variable selection),
and the order in which possible values are tried (value selection). In case the default,
complete, depth-first search is not sufficient, we also may have to decide on a incom-
plete search strategy. For the problem considered here, the choice is much simpler. The



squares should be assigned by decreasing size, so that the largest squares are assigned
early on; there is no need for a dynamic variable ordering. Note that this is not necessar-
ily true for the general rectangle placement problem, where items may be incomparable.
As we may have to explore the complete search space for many subproblems, the choice
of a good value ordering is not so critical, since it will only have an effect on feasible
sub-problems and, as we need to explore the search space completely for the infeasi-
ble subproblems, there is little incomplete search strategies can contribute. Given these
restrictions, it is surprising how many different search methods can be applied to this
problem type. The following paragraphs describe the nine alternatives we considered.

3.1 Naive

The most basic routine places the squares one after the other, in order of decreasing
size, by choosing a value for the x and y variable. On backtracking, the next alternative
position is tested. The fundamental problem with this method is the large number of
alternative values to be tested.

3.2 X then Y

An alternative method would assign all x variables first, before assigning any of the y
variables. The advantage is that after fixing the x values, there are few if any choices
left for the y values, reducing the effective depth of the search tree to n. Unfortunately,
if this does not work, this method will lead to deep backtracking (thrashing), making
finding a solution all but impossible.

3.3 Disjunctive

An alternative way of placing the rectangles is deciding on the relative position of each
pair. A rectangle can be placed to the left, to the right, above or below another rectangle,
as shown in Figure 3. Each choice is enforced by imposing a constraint on the x or y
variables of the two rectangles.

3.4 Semantic Disjunctive

A problem with the above disjunctive strategy is that the alternative cases are not exclu-
sive: a rectangle can be for example both to the left and above another one. This means
that we will consider some alternatives twice in the search, that is not a good idea given
the overall size of the search space. One possible way of dealing with this overlap is
to exclude left and right choices for the placement above and below. This leads to the
four alternatives shown in Figure 4. This method is called semantic4 in the experiments.
Instead of trying these four alternatives for one choice, we can also split the decision
into three binary choices. This maximizes the information that is available at each point
and can help to reduce the number of choices to be explored. These binary decisions
are shown in Figure 5. This method is called semantic in the experiments. The name
semantic disjunctive is taken from [13], although it is not clear which variant is used in
that paper.



X2, Y2

W2

H2

X1, Y1

W1
H1

left
X2 ≥ X1 + W1

Y1 ≥ Y2 + H2 above

X1 ≥ X2 + W2

right

Y2 ≥ Y1 + H1below

Fig. 3. Relative positioning of pairs of squares.

X2 ≥ X1 + W1

X1 ≥ X2 + W2

Y1 ≥ Y2 + H2, X2 < X1 + W1, X1 < X2 + W2

Y2 ≥ Y1 + H1, X2 < X1 + W1, X1 < X2 + W2

Fig. 4. Semantic disjunctive: showing four branches. Note some constraints appear twice.

3.5 Dual

This strategy is an example of a non-deteriministic variable selection, followed by a
deterministic value selection. This version, called dual, first assigns all the x variables,
and then the y variables. It is the strategy used for the perfect square placement problems
in [2, 4]. It works by choosing increasing values for the variables, and then deciding for
each variable whether it should take that value or not. Once all x variables have been
fixed, finding values for the y variables should be straightforward. There is a risk that
due to a lack of propagation no valid assignment for the y variables exists, which will
cause deep backtracking.

3.6 Forcing obligatory parts

The following strategies try to avoid the large branching factor caused by choosing
individual values for the variables by splitting the domain into intervals first. The key
idea is to make the size of the interval dependent on the size of the rectangle, it should be



X2 ≥ X1 + W1

X2 < X1 + W1

X1 ≥ X2 + W2

X1 < X2 + W2

Y1 ≥ Y2 + H2

Y2 ≥ Y1 + H1

Fig. 5. Semantic disjunctive with binary choices.

chosen large enough so that obligatory parts are generated for the CUMULATIVE and
possibly the DISJOINT constraint. Figure 6 shows the effect of changing the interval
size. Beldiceanu et al [3] suggest the interval size

⌊
S
2

⌋
+1 for a square of size S, which

creates obligatory parts of at least half the size of the item. We show below that for the
problem considered here this value is too aggressive, and smaller interval sizes lead to
better performance. We tested three variants of this approach:

Xl Xr

Xl Xr

Number of intervals: large

Number of intervals: small

Obligatory parts

Large Interval

Small Interval

Fig. 6. Forcing obligatory parts.

Interval. First split the x variables into intervals, then fix values for them, followed by
splitting the y variables into intervals, and finally fixing the values of the y variables.
This method is proposed in [3] for the perfect square packing problem. This is quite a
risky strategy. But by ignoring the y variables when assigning the x variables, we can
possibly reduce the height of the search tree by a factor of 2, dramatically reducing the
overall search space. Unfortunately, there is no guarantee that this will work in general,
in particular if there is significant slack and/or the constraint propagation is weak.

Split. First split the x variables into intervals, then the y variables, before fixing the x
variables, and then the y variables. This is even more risky than the previous strategy.



XY Intervals. For each rectangle, split the x and y variables into intervals, creating an
obligatory part for both CUMULATIVE and the DISJOINT constraint. Once this is done
for all rectangles, fix the values for x and y variables for each rectangle. This method is
less aggressive, but, by interleaving x and y variables, may create larger search trees.

4 Model Improvements

We consider some runtime performance enhancing improvements.

4.1 Empty Strip Dominance

In [10] one of the pruning methods is a dominance criterion that eliminates certain
partial placements from consideration, since an equivalent placement has already been
investigated. This is a special case of symmetry breaking, a very active field of research
for constraint programming [9]. Such reasoning cannot be directly put inside a DIS-
JOINT or CUMULATIVE constraint, as it removes feasible, but dominated assignments;
it has to be added either as a modification of the search routine, or a specific constraint.

We do not use the same problem representation as [10], and therefore have to adapt
the approach to the possibilities of our model. We introduce two variants, one dealing
with the border of the problem space, the other dealing with interaction of two squares.
We do not consider the case where multiple squares form a “wall”.

Initial Domain Reduction. Following the reasoning in [10], we can remove some values
from the domain of the X and Y variables for a square with edge size k. Suppose the
square is placed d units from the border. Then the gap can only be used by squares
up to length d. If all squares 1 × 1, 2 × 2, . . . , d × d fit into the space k × d, then
it would be possible to shift the larger square to the border, moving all these smaller
squares into the now vacant space. As we will consider the placement of the big square
on the border, we do not have to consider the placement d units from the border, this
value can be removed from the domain a priori. For each size k, we can easily compute
all values that can be removed, by considering the placement problem of d squares of
increasing size in a k × d area. Note that this can be easily solved by hand, checking
which squares cannot be placed on top of each other. This leads to the generic domain
reductions shown in Table 1 for squares from size 2 up to size 45. These reductions
(called domain) can be applied when setting up the problem, and are independent of
the size of the enclosing space. For the problem of packing squares considered in this
paper we can strengthen the bounds slightly, as shown in the specific row in Table 1.
This uses the fact that each square occurs only once, so for the square of size 3 we can
remove gap 3 as well, as only squares 1 × 1 and 2 × 2 can fill the gap.

Interaction of two squares. A similar pruning (called gap) can be used to eliminate
the placement of squares that face a larger square at a certain distance. As the search
routines do not just place one square after the other, this check has to be data-driven,
it will be tested as soon as both squares are placed. The situation is shown in Figure 7
(case A). Square 2 is to the right of the larger square 1, and facing it, i.e.

Y2 ≥ Y1, Y2 + H2 ≤ Y1 + H1.



Table 1. Forbidden gaps due to dominance.

size 2 3 4 5-8 9-11 12-17 18-21 22-29 30-34 34-44 45
generic 1 2 2 3 4 5 6 7 8 9 10
specific 2 3

The distance D = X2−(X1 +W1) between the squares cannot be any of the forbidden
gap values for H2. The same argument can be made if square 2 is above square 1 and
facing it (Figure 7, case B): X2 ≥ X1, X2 + W2 ≤ X1 + W1, D = Y2 − (Y1 + H1).

X1, Y1

W1

H1

X2, Y2

W2

H2A

X2, Y2

W2

H2B

Y2 ≥ Y1

Y2 + H2 ≤ Y1 + H1

D

X2 ≥ X1

X2 + W2 ≤ X1 + W1
D

Fig. 7. Dominance condition between squares.

4.2 Ignoring Size 1 Squares

The square of size 1 can be placed in any available location, we therefore do not need
to include it in the constraint model (we call this method notone), incurring the cost
of constantly updating its domains and checking its interaction with the other squares.
Contrary to [3] we observe a significant improvement in performance when the smallest
square is removed. For their problem of perfect square placement, the opposite occurs:
Execution times increase dramatically by a factor of 7. The probable cause is that the
step from no slack in the perfect placement problem to a single unit of slack in the prob-
lem without the 1×1 square reduces the effectiveness of some propagation mechanism.
In our case, most problems already contain a significant amount of slack, so the reduc-
tion in propagation overhead becomes more visible. Note that we still have to consider
the 1 × 1 square when calculating the required area to fill, so that there is room for it
even if it is not represented in the constraints.

4.3 Ignoring Size 2 Squares

We can also try to ignore the 2×2 square when setting up the constraints. If the resulting
problem is infeasible, then the original problem is also infeasible. If it is feasible, then



we might get lucky, and the solution leaves place for both 2×2 and 1×1 squares. If this
is not the case, we have to check the candidate again, with the 2×2 square included. For
the candidates studied, only one instance (size 21, 37×90) is feasible when ignoring the
2 × 2 square, and infeasible for the original problem. We do not use this simplification
in our experiments.

5 Results

We now report some experimental results for our programs using SICStus Prolog 4.0.2
on a 3GHz Intel Xeon E5450 with 3.25Gb of memory running WindowsXP SP2. We
use a single processor core for the experiments.

Table 2. Strategy comparison.

n naive naive xtheny disj semantic4 semantic dual interval split xy
+gap 0.3 0.2 0.75

15 2.92 2.16 0.09 12.12 0.55 0.45 2.63 - 0.05 -
16 10.44 7.02 0.11 98.25 1.31 1.03 0.89 - 0.05 -
17 20.75 13.81 0.27 23.57 1.48 1.13 0.33 0.05 0.05 0.81
18 667.33 325.56 18.37 - 30.53 23.05 118.58 1.83 1.13 13.94
19 4140.09 1823.15 13.73 - 83.42 63.25 80.66 1.11 1.88 36.78
20 - - 13.08 - 216.07 167.61 149.79 2.14 1.47 108.28
21 - - 143.72 - 1138.98 865.13 - 8.09 10.59 619.45
22 - - 1708.89 - - - - 52.21 32.36 1668.59
23 - - - - - - - 245.07 265.54 9521.73
24 - - - - - - - 452.73 545.82 37506.20
25 - - - - - - - 2533.64 4127.41 -
26 - - - - - - - 14158.15 - -
27 - - - - - - - 43529.87 - -

We first compare the different strategies in Table 2, showing the execution times (in
seconds) required for problem sizes 15 to 27. Missing entries indicate that times were
significantly exceeding competing methods. The disj strategy is performing worst, even
slower than the naive enumeration. This is not surprising, considering that the choices
are not exclusive. We also include the combination of naive strategy with the gap im-
provement. This is the only case where this redundant constraint improves results sig-
nificantly. Enumerating all x and then the y variables (xtheny strategy) achieves a much
better result than the naive enumeration which interleaves their enumeration. The dual
strategy performs badly when solving all candidate problems, but is competitive for
some instances with no or very little slack, even for large problem sizes. The semantic
branching works quite well up to problem size 21, with the binary choices leading to
a slightly better result. The clear winners are the branching methods based on inter-
vals, where the more conservative xy strategy is out-performed by the interval and split
strategies, which split the x variables before the y variables. For each method we use
the interval size (indicated as a fraction of the square length) which produces the most
stable results over all problem instances.

Even when we consider individual candidates, we find that the interval strategy
performs best for nearly all cases. There are some exceptions for problems with no



0.01

0.1

1

10

100

1000

10000

100000

1e+06

16 18 20 22 24 26 28

T
im

e[
s]

Problem Size

Korf
BlueBlocker

naive
naive gaps

xtheny
disj

semantic4
semantic

dual
interval

split
xy

Fig. 8. Strategy comparison plot: including methods from the literature.

slack, where the dual method sometimes wins, and for some feasible problems, for
which the split strategy seems to work well.

Figure 8 presents the result in graphical form, and adds the times for previous ap-
proaches (Korf and BlueBlocker results from [13]) for comparison. Note the logarith-
mic scale for the execution time. With the exception of the naive strategy, all other
methods outperform the previously known solutions.

Figure 9 shows the impact of the interval length for the interval strategy. The interval
length (as a fraction of the length of the square to be placed) is plotted on the x-axis, the
execution time on the y-axis. Time points missing indicate that no solution was found
within a timeout of 120 seconds. The impact of the interval size is more pronounced
for the larger problem sizes, where values 0.2-0.3 seem to provide the best results.
Values 0.4 and higher lead to thrashing in some instances, and can therefore not be
recommended.

Table 3 shows the best results with the interval strategy for the rectangle packing
problem of sizes 18 to 27, problem sizes 26 and 27 were previously open. The columns
have the following meaning:

– n is the problem size;
– Surface is the total surface area of all squares to be packed;
– K is the number of subproblems that had to be checked;
– Width and Height are the size of the optimal rectangle;



0.01

0.1

1

10

100

1000

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

T
im

e
[s

ec
]

Interval Length (Fraction of Size)

17
18
19
20
21
22
23

Fig. 9. Interval strategy: impact of interval length.

– Area is its surface area;
– Loss is the spare space in the optimal rectangle as a percentage;
– B is the number of backtrack steps as reported by SICStus Prolog;
– Time is the time (in HH:MM:SS) required.

For ease of comparison, we also include in Table 3 the results reported in [13]. The
times for Clautiaux, Korf and BlueBlocker were obtained on a Linux Opteron 2.2GHz
machine with 8Gb of RAM. Our results use SICStus 4.0.2 on a 3GHz Intel Xeon 5450
with 3.25Gb of memory, we estimate that our hardware is about twice faster. The pre-
vious best time for size 25 in [11] was over 42 days, although on a significantly slower
machine.

Table 4 shows the impact of the different improvements to our model, giving the
required runtime as a percentage of the pure model. The best combination ignores the
square of size 1 × 1 (option notone), and uses the initial domain reduction from the
dominance criterion (domain), but does not use the additional constraint about the gap
between squares (gap). The massive improvement when ignoring the 1×1 square cannot
be completely explained by reduced propagation. It is most likely caused by reducing
bad choices at the end of the x interval splitting. We noted that it pays off not to include
the small squares in this part of the search.

In our decomposition approach, we have to show infeasibility of multiple subprob-
lems before reaching the optimal solution. The times required for the subproblems vary



Table 3. Rectangle placement overview.

n Surface K Width Height Area Loss Back Time Clautiaux Korf BlueBlocker
18 2109 14 31 69 2139 1.42 25781 00:01 31:33 1:08 1:29
19 2470 12 47 53 2491 0.85 18747 00:01 72:53:18 8:15 4:11
20 2870 14 34 85 2890 0.70 28841 00:02 - 13:32 15:03
21 3311 19 38 88 3344 1.00 128766 00:07 - 1:35:08 1:32:01
22 3795 15 39 98 3822 0.71 566864 00:51 - 6:46:15 4:51:23
23 4324 19 64 68 4352 0.65 2802479 03:58 - 36:54:50 29:03:49
24 4900 18 56 88 4928 0.57 4541284 05:56 - 213:33:00 146:38:48
25 5525 17 43 129 5547 0.40 28704074 40:38 - see text -
26 6201 21 70 89 6230 0.47 143544214 03:41:43 - - -
27 6930 21 47 148 6956 0.38 420761107 11:30:02 - - -

Table 4. Method comparison.

n pure gap domain notone all best
18 100.00 99.37 78.96 12.93 9.77 9.78
19 100.00 101.61 87.14 48.55 38.26 37.31
20 100.00 105.26 92.24 18.93 16.20 15.39
21 100.00 100.94 81.90 63.57 50.82 49.58
22 100.00 100.24 90.56 23.66 19.46 19.00
23 100.00 99.81 78.92 30.33 23.18 22.80
24 100.00 101.77 77.69 36.43 29.16 28.58

widely. For the interval strategy, this does not seem to be caused by the amount of slack
in the problem, the shape of the enclosing rectangle has a much more direct impact.
Although not uniform, Figure 10 shows a clear connection between the ”squareness”
of the rectangle and the runtime. It is much harder to show infeasibility for near-square
rectangles. For the dual strategy, the opposite happens. Runtimes explode when the
slack increases, but there is little impact of the ”squareness”.

6 Incomplete Heuristics

We also considered incomplete heuristics to find good solutions for the problem and
evaluated these on the square packing problem. They are based on the well-known
observation that good packing solutions place the large items in the corner and on the
edges of the enclosing field without any lost space. The smaller items and the slack
space are used inside the packing area. We only consider one side, say the bottom one,
of the board for our heuristic, and assume that the biggest square is placed in the bottom
left corner. We then try to find combinations of K − 1 other squares that fill the bottom
edge completely, not considering very small squares.

We precompute all possible solutions with a small finite domain constraint program.
Once all solutions are found, we order them by decreasing area of the selected squares,
and use them as initial branches in our packing model, setting the y coordinate of the
selected squares to 1, as well as fixing the biggest square in position (1, 1). Note that
we do not fix the relative placement in the x direction, this is determined by the remain-
der of the search routine. If no solution for the given Size is found, we backtrack and
recompute the heuristic for the next larger value.



0.01

0.1

1

10

100

1000

10000

100000

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
im

e[
s]

W/H

18
19
20
21
22
23
24
25
26

Fig. 10. Interval strategy: impact of squareness.

Table 5. New optimal solutions for square packing.

Problem Size 26 27 29 30 31 35
Optimal Solution 80 84 93 98 103 123
Topt 12:26 00:04 11:06 2:07 00:18 1:10:07
Tproof 1:25:22 - - - - -

Optimal solutions for the square packing problem up to size 25 are already known
from [11]. We find six new optimal values shown in Table 5, Topt is the time required
to find the optimal solution, Tproof the time for the proof of optimality with the full
model. A dash indicates that a lower bound is reached.

7 Conclusion

In this paper we have demonstrated that in the domains of optimal rectangle and square
packing an “off-the-shelf” constraint programming system, SICStus Prolog, outper-
forms recently developed ad-hoc approaches by over three orders of magnitude. We
have also closed eight open problems: two rectangle packing problems and six square
packing problems. We argue that rectangle packing is a domain in which current con-
straint programming technology significantly outperforms hand-crafted ad-hoc systems



developed for this problem. This provides the CP community with a convincing success
story.

8 Acknowledgment

This work was supported by Science Foundation Ireland (Grant Number 05/IN/I886).
The authors wish to thank Mats Carlsson, who provided the SICStus Prolog 4.0.2 used
for the experiments.

References

1. A. Aggoun and N. Beldiceanu. Extending CHIP in order to solve complex scheduling prob-
lems. Journal of Mathematical and Computer Modelling, 17(7):57 –73, 1993.

2. N. Beldiceanu, E. Bourreau, and H. Simonis. A note on perfect square placement, 1999.
Prob009 in CSPLIB.

3. N. Beldiceanu, M. Carlsson, and E. Poder. New filtering for the cumulative constraint in the
context of non-overlapping. In CP-AI-OR 08, Paris, May 2008. to appear.

4. N. Beldiceanu and E. Contejean. Introducing global constraints in CHIP. Journal of Mathe-
matical and Computer Modelling, 20(12):97–123, 1994.

5. Nicolas Beldiceanu and Mats Carlsson. Sweep as a generic pruning technique applied to the
non-overlapping rectangles constraint. In Walsh [16], pages 377–391.

6. Nicolas Beldiceanu, Mats Carlsson, Emmanuel Poder, R. Sadek, and Charlotte Truchet.
A generic geometrical constraint kernel in space and time for handling polymorphic -
dimensional objects. In Christian Bessiere, editor, CP, volume 4741 of Lecture Notes in
Computer Science, pages 180–194. Springer, 2007.

7. Nicolas Beldiceanu, Qi Guo, and Sven Thiel. Non-overlapping constraints between convex
polytopes. In Walsh [16], pages 392–407.

8. M. Carlsson et al. SICStus Prolog User’s Manual. Swedish Institute of Computer Science,
release 4 edition, 2007. ISBN 91-630-3648-7.

9. I. Gent, K. Petrie, and J.F. Puget. Symmetry in constraint programming. In F. Rossi, P. van
Beek, and T. Walsh, editors, Handbook of Constraint Programming, chapter 10. Elsevier,
2006.

10. Richard E. Korf. Optimal rectangle packing: Initial results. In Enrico Giunchiglia, Nicola
Muscettola, and Dana S. Nau, editors, ICAPS, pages 287–295. AAAI, 2003.

11. Richard E. Korf. Optimal rectangle packing: New results. In Shlomo Zilberstein, Jana
Koehler, and Sven Koenig, editors, ICAPS, pages 142–149. AAAI, 2004.

12. Michael D. Moffitt, Aaron N. Ng, Igor L. Markov, and Martha E. Pollack. Constraint-driven
floorplan repair. In Ellen Sentovich, editor, DAC, pages 1103–1108. ACM, 2006.

13. Michael D. Moffitt and Martha E. Pollack. Optimal rectangle packing: A meta-CSP ap-
proach. In Derek Long, Stephen F. Smith, Daniel Borrajo, and Lee McCluskey, editors,
ICAPS, pages 93–102. AAAI, 2006.

14. Jarrod A. Roy and Igor L. Markov. Eco-system: Embracing the change in placement. In
ASP-DAC, pages 147–152. IEEE, 2007.

15. P. Van Hentenryck. Scheduling and packing in the constraint language cc(FD). In M. Zweben
and M. Fox, editors, Intelligent Scheduling. Morgan Kaufmann Publishers, San Francisco,
USA, 1994.

16. Toby Walsh, editor. Principles and Practice of Constraint Programming - CP 2001, 7th
International Conference, CP 2001, Paphos, Cyprus, November 26 - December 1, 2001,
Proceedings, volume 2239 of Lecture Notes in Computer Science. Springer, 2001.



A New Solutions

This appendix is not part of the document proper, and can be ignored by reviewers.
The following diagrams show the new solutions obtained for the rectangle and square
packing problems. They are provided here for convenience only, and can also be found
on the website (http://www.4c.ucc.ie/˜hsimonis) of the authors.

26

25

24

23

22

21

20

19
18

1716

15

14

13
12

11

10

9

8

7

6

5

4 3

2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90

Fig. 11. Solution N=26 Width=70 Height=89



27

26

25

24 23

22

21

20

19

18

1716

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149

Fig. 12. Solution N=27 Width=47 Height=148



26 25

24

23

22

21

20

19

18

17

16

15

14

13
12 11

10

9

87
6

5 4

3

2
1

1 2 3 4 5 6 7 8 9 101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81

Fig. 13. Solution N=26 Width=80 Height=80



27 26

25

24 23

22

21

20

19

18

17

16

15

14

1312

11

10

98
7

6 5

4

3

2
1

1 2 3 4 5 6 7 8 9 10111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85

Fig. 14. Solution N=27 Width=84 Height=84



29 28

27

26

25

24 23

22

21

20

19

18

17

16

15

14

13
1211

10

9

8

7
6

5

4
3

21

1 2 3 4 5 6 7 8 9 10111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94

Fig. 15. Solution N=29 Width=93 Height=93



30 29

28

27

26

25

24

23 22

21

20

19

18

17 16 15 14
13 12

11

109

8 7

6

5

4
3

2
1

1 2 3 4 5 6 7 8 9 101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

Fig. 16. Solution N=30 Width=98 Height=98



31 30

29

28

27

26

25

24

23

22

21

20

19

18

17

16 15

14

13

12

11

10

9

8

7 6

5 4

3
2

1

1 2 3 4 5 6 7 8 9 101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104

Fig. 17. Solution N=31 Width=103 Height=103



35 34

33

32

31

30

29

28

27

26

25

24

23

22

21

20

19

18

17

1615

14

13

12

11

10

9

8

7

6

5

4

3

2

1

1 2 3 4 5 6 7 8 9 101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124

Fig. 18. Solution N=35 Width=123 Height=123


