
22 September 2020 Constraint Programming

Constraint Programming

- An overview

• Constraint Networks and Consistency Criteria

• Node- and Arc-consistency

• Enforcing Algorithms and their Complexity

• Constraint Programming by Example (Choco)

• Constraint Programming Languages

• An introduction to Choco

0

21 September 2020 Constraint Programming 1

Propagation in Search

- Given a problem with n variables x1 to xn, and assuming a lexicographical
variable/value heuristics, the execution model follows the following pattern to
incrementally extend partial solutions until a complete solution is obtained:

Declaration of Variables and Domains,
Specification of Constraints,

propagation, % initial reduction of the problem

% Labelling of Variables,

label(x1), % variable/value selection with backtraking

propagation, % reduction of problem {x2 ... xn}

label(x2),

propagation, % reduction of problem {x3 ... xn}

...

label(xn-1)

propagation, % reduction of problem {xn}

label(xn)

21 September 2020 Constraint Programming 2

Complexity of Search

- Qualitatively, this process may be represented by means of the following picture

C
om

pu
ta

tio
na

l C
os

t

R - Reduction Cost

S- Search Cost

R+S
Combined Cost

Effort spent in solving the problem

Amount of Reduction Achieved

22 September 2020 Constraint Programming 3

Propagation: Consistency Criteria

- Consistency criteria enable to establish redundant values (i.e. those that do not
appear in any solution) in the variables’ domains, requiring no prior knowledge
on the set of problem solutions.

- Hence, procedures that maintain these criteria during the “propagation” phases,
will eliminate redundant values and so decrease the search space on the
variables yet to be enumerated.

- For constraint satisfaction problems with binary constraints, the most usual
criteria are, in increasingly complexity order,

§ Node Consistency

§ Arc Consistency

§ Path Consistency

§ i-Consistency

22 September 2020 Constraint Programming 4

Node - Consistency

Definition (Node Consistency):

• A constraint satisfaction problem is node-consistent if no value in the
domain of its variables violates the unary constraints.

- This criterion may seem both obvious and useless. After all, who would specify
a domain that violates the unary constraints ?!

- However, this criterion must be regarded within the context of the execution
model that incrementally completes partial solutions.

§ Constraints that were not unary in the initial problem become so when one
(or more) variables are enumerated.

22 September 2020 Constraint Programming 5

Node - Consistency

Example:

- After the initial posting of the
constraints, the constraint
network model at the right
represents the 4-queens
problem.

- After enumeration of variable
q1, i.e. q1=1, constraints c12,
c13 and c14 become unary !!

q1 in 1..4

q4 in 1..4

q3 in 1..4q2 in 1..4

c12

c23
c14

c24
c34

c13

q4 in 1..4

q3 in 1..4q2 in 1..4
c23

c24
c34

q2 ¹ 1, 2 q3 ¹ 1, 3

q4 ¹ 1, 4

22 September 2020 Constraint Programming 6

Node - Consistency

- An algorithm that maintains node consistency should remove from the domains
of the “future” variables the appropriate values.

- Maintaining node consistency thus achieves the following domain reduction.

q4 in 2,3

q3 in 2,4q2 in 3,4
c23

c24
C34

q2 ¹ 1,2 q3 ¹ 1,3

q4 ¹ 1,4

q4 ¹ 1,4

1 1
1 1
1 1

q2 ¹ 1,2

q3 ¹ 1,3

22 September 2020 Constraint Programming 7

Enforcing Node-Consistency

Definition (Node Consistency):

• A constraint satisfaction problem is node-consistent if no value in the
domain of its variables violates the unary constraints.

Enforcing node consistency: Algorithm NC-1

• Node-consistency can be enforced by the very simple algorithm shown
below:

procedure NC-1(V, D, C);
for x in V

for v in Dx do
for Cx in {C: Vars(Cx) = {x}} do

if not satisfy(x-v, Cx) then
Dx <- Dx \ {v}

end for
end for

end for
end procedure

22 September 2020 Constraint Programming 8

Enforcing Node-Consistency

Space Complexity of NC-1: O(nd).

• Assuming n variables in the problem, each with d values in its domain, and
assuming that the variable’s domains are represented by extension, a space
nd is required to keep explicitely the domains of the variables.

• Algorithm NC-1 does not require additional space, so its space complexity is
O(nd).

Time Complexity of NC-1: O(nd).

• Assuming n variables in the problem, each with d values in its domain, and
taking into account that each value is evaluated one single time, it is easy to
conclude that algorithm NC-1 has time complexity O(nd).

- The low complexity, both temporal and spatial, of algorithm NC-1, makes it
suitable to be used in virtual all situations by a solver, despite the low pruning
power of node-consistency.

22 September 2020 Constraint Programming 9

Arc - Consistency

- A more demanding and complex criterion of consistency is that of arc-
consistency

Definition (Arc Consistency):

• A constraint satisfaction problem is arc-consistent if,

§ It is node-consistent; and

§ For every label xi-vi of every variable xi, and for all constraints cij, defined
over variables xi and xj, there must exist a value vj that supports vi, i.e.
such that the compound label {xi-vi, xj-vj} satisfies constraint cij.

22 September 2020 Constraint Programming 10

Arc - Consistency

Example:

- After enumeration of variable q1=1, and making the network node-consistent,
the 4 queens problem has the following constraint network:

- However, label q2-3 has no support in variable q3, since neither the compound
label {q2-3 , q3-2} nor {q2-3 , q3-4} will satisfy constraint C23.

- Therefore, value 3 can be safely removed from the domain of q2.

q4 in 2,3

q3 in 2,4Q2 in 3,4
C23

C24
C34

q2 ¹ 1,2 q3 ¹ 1,3

q4 ¹ 1,4

1 1
1 1
1 1 q4 ¹ 1,4

q2 ¹ 1,2

q3 ¹ 1,3

22 September 2020 Constraint Programming 11

Arc - Consistency

Example (cont.):

- In fact, none (!) of the values of q3 has support in variables q2 and q4, as
shown below:

§ Label q3-4 has no support in variable q2, since none of the compound
labels {q2-3, q3-4} and {q2-4, q3-4} satisfy constraint c23.

§ Label q3-2 has no support in variable q4, since none of the compound
labels {q3-2, q4-2} and {q3-2, q4-3} satisfy constraint c34.

q4 ¹ 1,4

1 1
1 1
1 1

q2 ¹ 1,2

q3 ¹ 1,3

22 September 2020 Constraint Programming 12

Arc - Consistency

Example (cont.):
- Since none of the values from the domain of q3 has support in variables q2

and q4, maintenance of arc-consistency empties the domain of q3!

- Hence, maintenance of arc-consistency not only prunes the domain of the
variables but also antecipates the detection of unsatisfiability in variable q3 !

- In this case, backtracking of q1=1 may be started even before the enumeration
of variable q2.

- Given the good trade-of between pruning power and simplicity of arc-
consistency, a number of algorithms have been proposed to maintain it.

q4 ¹ 1,4

1 1
1 1
1 1

q2 ¹ 1,2

q3 ¹ 1,3

22 September 2020 Constraint Programming 13

Enforcing Arc-Consistency: AC-1

Definition (Arc Consistency):

• A constraint satisfaction problem is arc-consistent if it is node-consistent and
for every label xi-vi of every variable xi, and for all constraints cij, defined over
variables xi and xj, there must exist a value vj that supports vi, i.e. such that
the compound label {xi-vi, xj-vj} satisfies constraint cij.

Enforcing arc-consistency: Algorithm AC-1

• The following simple (and inefficient) algorithm enforces arc-consistency:
procedure AC-1(V, D, C);

NC-1(V,D,C); % node consistency
Q = {aij | cij Î C Ú cji Î C }; % see note
repeat

changed <- false;
for aij in Q do

changed <- changed or revise_dom(aij,V,D,C)
end for

until not change
end procedure

22 September 2020 Constraint Programming 14

Enforcing Arc-Consistency: AC-1

Revise-Domain
- Algorithm AC-1 (and others) uses predicate revise-domain on some arc aij,

that succeeds if some value is removed from the domain of variable xi (a side-
effect of the predicate).

predicate revise_dom(aij,V,D,C): Boolean;
success <- false;
for v in dom(xi) do

if ¬ $vj in dom(xj): satisfies({xi-v,xj-vj},cij) then
dom(xi) <- dom(xi) \ {v};
success <- true;

end if
end for
revise_dom <- success;

end predicate

22 September 2020 Constraint Programming 15

Enforcing Arc-Consistency: AC-1

Space Complexity of AC-1: O(ad2)
- AC-1 must maintain a queue Q, with maximum size 2a. Hence the inherent

spacial complexity of AC-1 is O(a).

- To this space, one has to add the space required to represent the domains
O(nd) and the constraints of the problem. Assuming a constraints and d
values in each variable domain the space required is O(ad2), and the total
space requirement of

O(nd + ad2)

which dominates O(a).

- For “dense” constraint networks”, a » n2/2. This is then the dominant term, and
the space complexity becomes

O(ad2) = O(n2d2)

22 September 2020 Constraint Programming 16

Enforcing Arc-Consistency: AC-1

Time Complexity of AC-1: O(nad3)

- Assuming n variables in the problem, each with d values in its domain, and a
total of a arcs, in the worst case, predicate revise_dom, checks d2 pairs of
values.

- The number of arcs aij in queue Q is 2a (2 directed arcs aij and aji are
considered for each constraint cij). For each value removed from one domain,
revise_dom is called 2a times.

- In the worst case, only one value from one variable is removed in each cycle,
and the cycle is executed nd times.

- Therefore, the worst-case time complexity of AC-1 is O(d2 *2a*nd), i.e.

O(nad3)

22 September 2020 Constraint Programming 17

Enforcing Arc-Consistency: AC-3

Enforcing node consistency: Algorithm AC-3

- In AC-1, whenever a value vi is removed from the domain of some xi, all arcs are
re-examined. However, only the arcs aki (for k ¹ i) should be re-examined.

- This is because the removal of vi may eliminate the support from some value vk of
some variable xk for which there is a constraint cik (or cki).

- Such inefficiency of AC-1 is avoided in AC-3 below

procedure AC-3(V, D, C);
NC-1(V,D,C); % node consistency
Q = {aij | cij Î C Ú cji Î C };
while Q ¹ Æ do

Q = Q \ {aij} % removes an element from Q
if revise_dom(aij,V,D,C) then % revised xi

Q = Q È {aki | (cik Î C Ú cki Î C)Ù k ¹ i}
end if

end while
end procedure

22 September 2020 Constraint Programming 18

Enforcing Arc-Consistency: AC-3

Space Complexity of AC-3: O(ad2)

- AC-3 has the same requirements than AC-1, and the same worst-case space
complexity of O(ad2) » O(n2d2), due to the representation of constraints by
extension.

Time Complexity of AC-3: O(ad3)

- Each arc aki is only added to Q when some value vi is removed from the
domain of xi.

- In total, each of the 2a arcs may be added to Q (and removed from Q) d times.

- Every time that an arc is removed, predicate revise_dom is called, to check at
most d2 pairs of values.

- All things considered, and in contrast with AC-1, with temporal complexity
O(nad3), the time complexity of AC-3, in the worst case, is O(2ad * d2), i.e.

O(ad3)

22 September 2020 Constraint Programming 19

Enforcing Arc-Consistency: AC-4

Counting Supports: AC-4

• Every time a value vi is removed from the domain of some variable xi, all arcs
aki (k ¹ i) leading to that variable are re-examined.

• Nevertheless, only some of these arcs should be examined.

• Although the removal of vi may eliminate one support for some value vk of
another variable xk (given constraint cki), other values in the domain of xi may
support the pair xk-vk!

- This idea is exploited in algorithm AC-4, that uses a number of new data-
structures to count supporting values, which contrary to AC-3, with time
complexity of O(ad2), achieves a time-complexity of

O(ad2)

- This is in fact an optimal assymptotical worst-case complexity, since
checking all the pairs of values in all the binary constraints require ad2
operations.

22 September 2020 Constraint Programming 20

Enforcing Arc-Consistency: AC-4

Detecting last Supports: AC-6

• Whereas AC-4 maintains a number of counters to check whether there are
support for variables in the domain, the same effect can be achieved by simply
maintaining one value that witnesses this support.

• Every time this witness is removed, a next witness is sought.

• Hence there is no need to maintain expensive counters, and the goal of
maintaining arc-consistency can be made more efficiently.

- This is the idea exploited in algorithm AC-6, that uses “lighter” data-structures
to detect next supporting values which, like AC-4, has a time complexity of

O(ad2)

- Again this was already seen as the optimal assymptotical worst-case
complexity, and AC-6 could not beat it.

- However …

22 September 2020 Constraint Programming 21

Assessing Typical Complexity

Typical complexity of AC-x algorithms

- The worst-case time complexity that can be inferred from the algorithms that
maintain arc-consistency do not give a precise idea of their average behaviour in
typical situations. For such study, either one tests the algorithms in:

• A set of “benchmarks”, i.e. problems that are supposedly representative of
everyday situations (e.g. N-queens); or

• Randomly generated instances parameterised by

§ their size (number of variables and cardinality of the domains) ; and

§ their difficulty measured by

• density of the constraint network - % existing/ possible constraints; and

• tightness of the constraints - % of allowed / all tuples.

- The study of these issues has led to the conclusion that constraint satisfaction
problems often exhibit a phase transition, which should be taken into account in the
study of the algorithms.

22 September 2020 Constraint Programming 22

Randomly Generated Problem

n = 5
d = 4
Density = 6 / 10 = 60%
Tightness = 10 / 16 = 62.5%

a
b

c

e

d

1,2,
3,4

1,2,
3,4

1,2,
3,4

1,2,
3,4

1,2,
3,4

1 1
1 2
1 3
1 4
2 1
2 2
2 3
2 4

3 1
3 2
3 3
3 4
4 1
4 2
4 3
2 4

Cij =

22 September 2020 Constraint Programming 23

Assessing Typical Complexity: Phase Transition

- This phase transition typically contains the most difficult instances of the
problem, and separates the instances that are trivially satisfied from those that
are trivially insatisfiable.

- For example, in SAT problems, it has been found that the phase transition
occurs when the ratio of clauses to variables is around 4.3.

0 5 10 15

clauses / # variables

d
i
f
f
i
c
u
l
t
y

4.3

1 : a ∨ ∼b ∨ c
2 : ∼ a ∨ ∼b ∨ d
3 : b ∨ d ∨ ∼e

...
n : c ∨ ∼f ∨ ∼h

22 September 2020 Constraint Programming 24

Assessing Typical Complexity

- Typical Complexity of algorithms AC-3, AC-4 e AC-6
- (N-queens)

0

2000

4000

6000

8000

10000

12000

14000

16000

4 5 6 7 8 9 10 11

#
 t

es
ts

 a
nd

 o
pe

ra
tio

ns

AC-3
AC-4
AC-6

queens

22 September 2020 Constraint Programming 25

Assessing Typical Complexity

Typical Complexity of algorithms AC-3, AC-4 e AC-6
(randomly generated problems)

n = 12 variables, d= 16 values, density = 50%

0
2000
4000
6000
8000

10000
12000
14000
16000
18000
20000
22000

5 10 15 20 25 30 35 40 45 50 60 70 80

#
 t

es
ts

 a
nd

 o
pe

ra
ti

on
s

AC-3
AC-4
AC-6

Tightness (%)

22 September 2020 Constraint Programming 26

Path-Consistency

- The following constraint network is obviously inconsistent:

- Nevertheless, it is arc-consistent: every binary constraint of difference (≠) is
arc-consistent whenever the constraint variables have at least 2 elements in
their domains.

- However, is is not path-consistent: no label {<a-va>, <b-vb>} that is consistent
(i.e. does not violate any constraint) can be extended to the third variable c.

{<a-1>, <b-2>} ® c ≠ 1, 2 ; {<a-1>, <b-2>} ® c ≠1, 2

- This property is captured by the notion of path-consistency (next class)

1 , 2

1 , 2 1 , 2

≠

≠

≠

a

b c

22 September 2020 Constraint Programming 27

Constraint Programming

• Modelling in Choco

22 September 2020 Constraint Programming

Constraint Programming by Example

First example: SEND+MORE = MONEY

- Find the digits encoded by letters, where different letters stand for different
digits, and the symbolic sum below stands (the leftmost digits are not zero):

S E N D
+ M O R E
M O N E Y

- Similarly to all combinatorial problems, a declarative approach (as taken by
Constraint Logic Programming) solves this problem by separating the two
components:

§ Model: What are the variables that will be chosen for the problem
unknowns, and the constraints that must be satisfied

§ Search: What strategies are used to assign values to variables

28

22 September 2020 Constraint Programming

Constraint Programming by Example

Modelling

- There are two main steps in modelling a problem:

1. Choose variables to represent the unknowns

• What are the variables

• What values they can take

2. Select the constraints that these variables must satisfy according to the
conditions of the problem;

• How to constrain the variables

• Are there alternative (more efficient?) sets of constraints?

- These decisions are often interdependent as illustrated in this problem.

S E N D
+ M O R E
M O N E Y

29

22 September 2020 Constraint Programming

Constraint Programming by Example

Model 1 :

- Variables Adopted:

§ One variable for each letter (we use the letter as the name of the variable)

§ Each variable takes values in 0 to 9

- Constraints to be Satisfied:

§ All variables must be different;

§ The sum must be correct

§ No leading zeros

S E N D
+ M O R E
M O N E Y

30

22 September 2020 Constraint Programming

Constraint Programming by Example

Model 1 : In Choco, this model may be specified as follows

package choco;

import org.chocosolver.solver.Model;
import org.chocosolver.solver.*;
import org.chocosolver.solver.variables.IntVar;

public class sendmory {
public static void main(String[] args) {

Model model = new Model("send + more = money");
// Declaration of variables
// Specification of constraints
// Execute and show results

}
}

31

S E N D
+ M O R E
M O N E Y

22 September 2020 Constraint Programming

Constraint Programming by Example

Model 1 : In Choco, this model may be specified as follows

// Declaration of variables
IntVar s = model.intVar("S", 0, 9);
IntVar e = model.intVar("E", 0, 9);
IntVar n = model.intVar("N", 0, 9);
IntVar d = model.intVar("D", 0, 9);
IntVar m = model.intVar("M", 0, 9);
IntVar o = model.intVar("O", 0, 9);
IntVar r = model.intVar("R", 0, 9);
IntVar y = model.intVar("Y", 0, 9);
IntVar op1 = model.intVar("S", 0, 10000);
IntVar op2 = model.intVar("S", 0, 10000);
IntVar res = model.intVar("S", 0, 100000);
// Specification of constraints
// Execute and show results

32

S E N D
+ M O R E
M O N E Y

22 September 2020 Constraint Programming

Constraint Programming by Example

Model 1 : In Choco, this model may be specified as follows

// Declaration of variables
// Specification of constraints
model.arithm(m, ">", 0).post();
model.arithm(s, ">", 0).post();
model.arithm(res, "=", op1, "+", op2).post();

// op1 = 1000s + 100e +10n + d
op1.eq(s.mul(1000).add(e.mul(100)).add(n.mul(10)).add(d)).post();
op2.eq(m.mul(1000).add(o.mul(100)).add(r.mul(10)).add(e)).post();
res.eq(m.mul(10000).add(o.mul(1000)).add(n.mul(100)).add(e.mul(10)

).add(y)).post();

model.allDifferent(new IntVar[]{s, e, n, d, m, o, r, y}).post();

// Execute and show results

S E N D
+ M O R E
M O N E Y

33

22 September 2020 Constraint Programming

Constraint Programming by Example

Model 2 :

- There is an alternative modelling, that represents the total sum as it is usually
operated with “carries”

§ One variable for each letter (we use the letter as the name of the variable)

• Each variable takes values in 0 to 9

§ 4 Carries

• Each carry takes value 0 or 1

- Constraints to be Satisfied:

§ All variables must be different;

§ All the sums (digit by digit, including carries) must be correct

§ No leading zeros

C4 C3 C2 C1
S E N D

+ M O R E
M O N E Y

34

22 September 2020 Constraint Programming

Constraint Programming by Example

Model 2 : This alternative model can also be expressed in Choco

// Declaration of variables
IntVar s = model.intVar("S", 0, 9);
IntVar e = model.intVar("E", 0, 9);
IntVar n = model.intVar("N", 0, 9);
IntVar d = model.intVar("D", 0, 9);
IntVar m = model.intVar("M", 0, 9);
IntVar o = model.intVar("O", 0, 9);
IntVar r = model.intVar("R", 0, 9);
IntVar y = model.intVar("Y", 0, 9);
IntVar c1 = model.intVar("C1", 0, 1); //carries
IntVar c2 = model.intVar("C2", 0, 1);
IntVar c3 = model.intVar("C3", 0, 1);
IntVar c4 = model.intVar("C4", 0, 1);
// Specification of constraints
// Execute and show results

35

C4 C3 C2 C1
S E N D

+ M O R E
M O N E Y

22 September 2020 Constraint Programming

Constraint Programming by Example

Model 2 : This alternative model can also be expressed in Choco

// Declaration of variables
// Specification of constraints
model.arithm(c4,"=", m).post();
model.arithm(m, ">", 0).post();
model.arithm(s, ">", 0).post();

// d + e = y + 10 c1
d.add(e).eq(y.add(c1.mul(10))).post();
// c1 + n + r = e + 10 c2
c1.add(n).add(r).eq(e.add(c2.mul(10))).post();
c2.add(e).add(o).eq(n.add(c3.mul(10))).post();
c3.add(s).add(m).eq(o.add(c4.mul(10))).post();

model.allDifferent(new IntVar[]{s, e, n, d, m, o, r, y}).post();
// Execute and show results

C4 C3 C2 C1
S E N D

+ M O R E
M O N E Y

36

22 September 2020 Constraint Programming

Constraint Programming by Example

Enumeration :

- Once the variables are declared and the constraints posted, the constraint
solver should find values for the variables in some efficient way.

- This is because the underlying constraint propagation process does not
guarantee that the problem has a solution!

- It simply removes values from the domain of variables that guaranteedely do
not belong to any solution.

- The enumeration is typically achieved in Choco with method solve(), that
assigns values to the input variables and backtracks when this is impossible.

- The labelling process may be more or less efficient, depending on the
heuristics used. A fairly good heuristic is the fail-first that assigns values to the
variables with less values in their domains. In Choco, that may be expressed
by setting the search policy

• slv.setSearch(minDomLBSearch(vars));

- More sophisticated heuristics may nevertheless be programmed by the user.

37

22 September 2020 Constraint Programming

Constraint Programming by Example

Model 1 : In Choco, this model may be specified as follows

// Declaration of variables
// Specification of constraints

// Execute and show results
Solver slv = model.getSolver();
if (slv.solve()){

System.out.println(" " + Integer.toString(1000*s.getValue()+
100*e.getValue()+10*n.getValue()+d.getValue()));

System.out.println("+" + Integer.toString(1000*m.getValue()+
100*o.getValue()+10*r.getValue()+e.getValue()));

System.out.println("-----");
System.out.println(10000*m.getValue()+1000*o.getValue()+

100*n.getValue()+10*e.getValue()+y.getValue());
} else {

System.out.println("no solutions");
}

38

C4 C3 C2 C1
S E N D

+ M O R E
M O N E Y

22 September 2020 Constraint Programming 39

Constraint Programming

• Modelling Languages
• Comet
• Zinc
• Choco

22 September 2020 Constraint Programming 40

Constraint Programming Languages

- A number of (pedagogical) reasons might justify Comet:

§ It is stand-alone

• not a library of Java or C++, as is the case of Choco and Gecode.

§ It includes solvers for both

• Constraint Programming; and

• Constrained Local Search

• As a full fledged language, it allows the full programming of heuristics.

o in Zinc, heuristics cannot be fully specified (a number of annotations are
available but they are not sufficient for some problems).

§ Nevertheless, Comet has a major problem in that it has been discontinued, and
replaced by Objective-CP (designed by the same authors – Pascal Van
Hentenryck and Laurent Michel Modelling.

41

8-queens problem

Q1 = 1

Q2 = 5

Q3 = 8

Q4 = 6

Q5 = 3

Q6 = 7

Q7 = 2

Q8 = 4

22 September 2020 Constraint Programming

22 September 2020 Constraint Programming 42

Constraint Programming Languages

int: n = 8;

array [1..n] of var 1..n: q;

include "alldifferent.mzn”;

constraint alldifferent(q); % rows
constraint alldifferent(i in 1..n)(q[i] + i-1); % / diagonal
constraint alldifferent(i in 1..n)(q[i] + n-i); % \ diagonal

solve :: int_search(q, first_fail,indomain_min, complete)
satisfy;

output ["8 queens, CP version:\n"] ++
[if fix(q[i]) = j then "Q " else ". " endif ++

if j = n then "\n" else "" endif
| i, j in 1..n
];

- The declarative nature of ZINC is easily illustrated with the n-queens problem:

22 September 2020 Constraint Programming 43

Constraint Programming Languages

import cotfd;
int t0 = System.getCPUTime();

int n = 8; range S = 1..n;

Solver<CP> cp();
var<CP>{int} q[i in S](cp,S);

solve<cp> {
cp.post(alldifferent(q));
cp.post(alldifferent(all(i in S) q[i] + i));
cp.post(alldifferent(all(i in S) q[i] - i));

}
using {

forall(i in S) by(q[i].getSize())
tryall<cp>(v in S) cp.label(q[i],v);

}

int t1 = System.getCPUTime();
cout << q << endl;
cout << " cpu time (ms) = " << t1-t0 <<endl;
cout << " number of fails = " << cp.getNFail() << endl;

… which can be compared with the Comet version…

22 September 2020 Constraint Programming 44

Constraint Programming Languages

public class n_queens {
public static void main(String[] args) {
int n = 24;
Model model = new Model(n + "-queens problem");
Solver s = model.getSolver();

IntVar[] queens = model.intVarArray("Q", n, 1, n, false);
IntVar[] diag1 = new IntVar[n];
IntVar[] diag2 = new IntVar[n];
for(int i = 0 ; i < n; i++){

diag1[i] = q[i].sub(i).intVar();
diag2[i] = q[i].add(i).intVar();}

m.post(
m.allDifferent(queens),
m.allDifferent(diag1),
m.allDifferent(diag2));

// Use fail-first Heuristics
s.setSearch(minDomLBSearch(queens));

// Solve and show statistics
Solution solution = s.findSolution();
System.out.println(solution.toString());
model.getSolver().printStatistics();

}}

… and the Choco version (to be done interactively in class):

22 September 2020 Constraint Programming 45

Constraint Programming

• An Introduction to Choco

22 September 2020 Constraint Programming 46

Constraint Programming Languages

- Choco is a set of Java libraries that supports CP (Complete Backtrack Search) and
is thus adopted in the course, although not exclusively.

- As mentioned, the alternative language, Comet, previously used in the course, has
been discontinued (although it may still be used).

- Meanwhile, a language that is becoming a standard, for CP alone, is Zinc / MiniZinc.

- In particular, it provides an interface (Flat-Zinc) that almost all existing CP solvers can
support (Gecode, Choco, SICStus, … CaSPER).

- This makes it possible to test solvers in a competition held annually with the CP
conferences.

- Given the above said, we will use Choco in this course (but Comet may be used
alternatively).

22 September 2020 Constraint Programming 47

Introduction to Choco

- Before addressing concepts and definitions we will informally see how these
features are addressed in the constraint programming language Choco.

- Choco is an Object-Oriented language, implemented as a set of libraries of
JAVA, with special classes and methods to deal with Constraint Programming.

- To install Choco, download the .jar files:
• choco-parsers-4.10.4-jar-with-dependencies
• choco-parsers-4.10.4-sources
• choco-parsers-4.10.4
• choco-solver-4.10.4-jar-with-dependencies
• choco-solver-4.10.4-sources
• choco-solver-4.10.4-sources

from the Choco Solver website:
- http://www.choco-solver.org

- (or directly from:
- https://github.com/chocoteam/choco-solver/releases/tag/4.10.4

You can find user guide and tutorials in the wiki:
- https://github.com/chocoteam/choco-solver/wiki

http://www.choco-solver.org/

22 September 2020 Constraint Programming 48

Introduction to Choco

- In Choco, a CSP (Constraint Satisfaction Problem) is typically solved in CP
with a program with the following structure

- Any Choco program requires a model. Model is a class with methods to
associate variables and constraints as well as nondeterministic search.

- To declare it the Model library must be imported;

import org.chocosolver.solver.Model;
Model model = new Model(n + "-queens problem");

import libraries;
// declare the variables
// post the constraints
// non deterministic search
// show results

22 September 2020 Constraint Programming 49

Introduction to Choco

- Variables are objects, declared by identifying their
§ Name (for reporting results)
§ Type
§ Domain

- We will be mostly concerned with Finite Domain (FD) variables, whose type is
IntVar, and have a domain that restricts the values that can appear in a
solution of the problem.

- Typically the domain is defined as a range of integers, as in

- Alternatively, the domain can be a set of integers

// Variable taking its value in [1, 3] (the value is 1, 2 or 3)
IntVar v1 = model.intVar("v1", 1, 3);

// Variable taking its value in {1, 3} (the value is 1 or 3)
IntVar v2 = model.intVar("v2", new int[]{1, 3});

22 September 2020 Constraint Programming 50

Introduction to Choco

- Variables may also be grouped together in arrays, specifying the size of the
arrays and the bounds of the individual elements, as in

- Variables may also be grouped together in matrices, specifying the size of the
arrays and the bounds of the individual elements, as

- To declare the variables, individually or in arrays the variable library must be
imported

IntVar[][] pos = model.intVarMatrix("T", nrows, ncols, 0, 9);

IntVar[] dst = model.intVarArray("D", n_elements, 0, 9);

import org.chocosolver.solver.variables.IntVar;

22 September 2020 Constraint Programming 51

Introduction to Choco

- Many types of constraints are defined in the language as primitives. They
belong to the class constraint and are declared with post method of the solver.

- The most common constraints are arithmetic constraints, imposing a relation
(==, !=, >, >=, <, <=) on arithmetic expressions built over CP and basic
variables and values with the arithmetic operators +, -, *, /.

- Simple Relational constraint with up to 3 arguments can be posted with the
arithm method, as in

- Constraint involving expressions with more than three arguments must be
specified with a “cumbersome” syntax, as seen before

model.arithm(res, "=", op1, "+", op2).post();

// c1 + n + r = e + 10 c2
c1.add(n).add(r).eq(e.add(c2.mul(10))).post();

22 September 2020 Constraint Programming 52

Introduction to Choco

- As a library of Java Choco inherits all its control structures (IF, FOR, WHILE)
that can be used to specify the constraints.

- For example, to impose all variables in a vector to be different one may use:

… although the same effects can be achieved with the alldifferent constraint

Model model = new Model(n + "-queens problem");
IntVar[] q = model.intVarArray("Q", n, 1, n, false);

for(int i = 0; i < n; i++){
for(int j = i+1; j < n; j++){

model.arithm(q[i], ”!=",q[j).post();
}

}

model.allDifferent(q).post()

22 September 2020 Constraint Programming 53

Introduction to Choco

- Other useful constraints are not easy to decompose into simpler arithmetic and
logical constraints.

- Even when they are, there are some specialised algorithms that achieve better
propagation.

- These are usually known as Global Constraints, and Choco supports a
number of those that have been proposed in the literature:

• Element
• Alldifferent
• Cardinality
• Knapsack
• Circuit
• Sequence
• Stretch
• Regular
• Cumulative

22 September 2020 Constraint Programming 54

Introduction to Choco

- Nondeterministic search is specified in CHOCO with a solver, associated to the
model previously defined, and asdequately imported.

- By default, a non-deterministic search is imposed, where alternative values for
the value of the variables are explored in some order and backtracked if they
lead to failure. This is achieved by method solve(), as in

- Some predefined heuristics can be specified to direct the search. For example
the first-fail heuristics can be specified as

import org.chocosolver.solver.Solver;
Solver s = model.getSolver();
s.solve()
// Use fail-first Heuristics
s.setSearch(minDomLBSearch(queens));

import static org.chocosolver.solver.search.strategy.Search.minDomLBSearch;
.....
s.setSearch(minDomLBSearch(queens));

s.solve()

22 September 2020 Constraint Programming 55

Introduction to Choco

- Solutions can also be obtained with a special class, Solution, that includes all
the declared decision variables, as in.

- A solution, if any, may be displayed converting it to a string, as in

- Alternatively, the value of some decision variable v, may be shown, by
obtaining its value (with method getValue(), and converting it to a string

import org.chocosolver.solver.Solution;

Solver s = model.getSolver();
Solution solution = s.findSolution();

if(solution != null){
System.out.println(solution.toString());}

System.out.print(String.valueOf(v.getValue())

22 September 2020 Constraint Programming 56

Introduction to Choco

- One solution that satisfies the problem is obtained with method solve(). When
more than the first solution is sought, then the solve() method may be used in
a while cycle, as in

- Notice that the solution must be reported inside the cycle (after leaving the the
cycle cycle the solver has no solution!).

- A similar technique should be adopted when aiming the optimization of some
variable v, after setting the model objective

while (s.solve()){
s.findSolution();
System.out.println(solution.toString());}

model.setObjective(Model.MINIMIZE, v);
s.setSearch(minDomLBSearch(vars));
....
while (s.solve()){

s.findSolution();
System.out.println(solution.toString());}

22 September 2020 Constraint Programming 57

Introduction to Choco

- We finish this brief introduction to CHOCO with some useful tips to measure
performance in program execution. The simplest way to obtain a number of
performance indicators of program execution, is with the statistics method:

- obtaining a complete statistics of execution, as in
model.getSolver().printStatistics();

- Model[24-queens problem] features:
Variables : 96
Constraints : 51
Building time : 0.064s
User-defined search strategy : yes
Complementary search strategy : no

- Complete search - 1 solution found.
Model[24-queens problem]
Solutions: 1
Building time : 0.064s
Resolution time : 0.054s
Nodes: 24 (445.9 n/s)
Backtracks: 6
Backjumps: 0
Fails: 4
Restarts: 0

22 September 2020 Constraint Programming 58

Introduction to Choco

- Individual performance indicators can be obtained by specific methods of the
model and the solver, namely the number of failures, backtracks and elapsed
CPU time

Model model = new Model(n + "-queens problem");
Solver s = model.getSolver();
...
float t0 = s.getTimeCount()*1000;
...
float t1 = s.getTimeCount()*1000;

// show model name
System.out.println(model.getName());
// number of failures
System.out.println(String.valueOf(s.getFailCount()));
// number of backtracks
System.out.println(String.valueOf(s.getBackTrackCount()));
// execution time
System.out.println(String.valueOf(t1-t0));

