
21 September 2020 Constraint Programming

Constraint Programming

- An overview

• Examples of decision (making) problems

• Declarative Modelling with Constraints

• Finite and Continuous Domains

• Constraint Propagation

0

21 September 2020 Constraint Programming

Constraint Problems: Examples

- Decision Making Problems include:

§ Modelling of Digital Circuits

§ Production Planning

§ Network Management

§ Scheduling

§ Assignment (Colouring, Latin/ Magic Squares, Sudoku, Circuits, ...)

§ Assignment and Scheduling (Timetabling, Job-shop)

§ Filling and Containment

- Typically a problem may be represented by different models, some of which
may be more adequate (ease of modelling, efficiency of solving in a given
solver, etc)

1

21 September 2020 Constraint Programming

Modeling of Digital Circuits

Goal (Example): Determine a test pattern that detects some faulty gate

- Variables:
§ Signals in the circuit

- Domain:
§ Booleans: 0/1 (or True/False, or High/Low)

- Constraints:
§ Equality constraints between the output of a gate and its “boolean

operation” (e.g. and, or, not, nand, ...)

A

C

D

B

E

F

G

H

I

G1

G2

G3

G4

G5

E = or(A,B) % G1
F = nand(B,C) % G2
G = and(B,C) % G3
H = nand(E,F) % G4
I = nand(F,G) % G5

2

21 September 2020 Constraint Programming

Production Planning

Goal (Example): Determine a production plan

- Variables:
§ Quantities of goods to produce

- Domain:
§ Rational/Reals or Integers

- Constraints:
§ Equality and Inequality (linear) constraints to model resource limitations,

minimal quantities to produce, costs not to exceed, balance conditions,
etc...

Find x, y and z such that
4x+ 3y + 6z £ 1500 % resources used do not exceed 1500
x + y + z >= 300 % production not less than 300 units
x £ z + 20 % x units within z ± 20 units
x ³ z - 20
x, y, z ³ 0 % non negative production

3

21 September 2020 Constraint Programming

Network Management

Goal (Example): Determine acceptable traffic on a netwok

- Variables:
§ Flows in each edge

- Domain:
§ Rational/Reals (or Integers)

- Constraints:
§ Equality and Inequality (linear) constraints to model capacity limitations,

flow maintenance, costs, etc...

Find x,y,z, a,b,c,d,e such that
x ³ 6, z ³ 10 % minimum flow
a £ 5, ... , f £ 6 % capacity

% flow maintenance
x = a, y = b + c, a + b + d = e,
c = d + f, e + f = z
x, y ,z, a, b, c, d, e, f ³ 0

5/a

2/d
8/e

6/f

3/b

7/c

x

y

z

4

21 September 2020 Constraint Programming

Schedulling

Goal (Example): Assign timing/precedence to tasks

- Variables:
§ Start Timing of Tasks, Duration of Tasks

- Domain:
§ Rational/Reals or Integers

- Constraints:
§ Precedence Constraints, Non-overlapping constraints, Deadlines, etc...

Find Sa ,..., Se, such that
Sb ³ Sa+Ta, % precedence

....
(Sc ³ Sb+Tb) Ú (Sb ³ Sc+Tc) % non overlap

...,
6 ³ Sa+Ta % deadline
Sa,..., Se ³0

Sa

Sc

Sb

Se

SdTa

Ta

Tb

Tc

Td

5

21 September 2020 Constraint Programming

Assignment

Many constraint problems can be classified as assignment problems. In general
all that can be stated is that these problems follow a general CSP goal :

Assign values to the variables to satisfy the relevant constraints.

– Variables:
§ Objects / Properties of objects

– Domain:
§ Finite Discrete /Integer or Infinite Continuous /Real or Rational Values

§ colours, numbers, duration, load
§ Booleans for decisions

– Constraints:
§ Compatibility (Equality, Difference, No-attack, Arithmetic Relations)

Some examples may help to illustrate this class of problems

6

21 September 2020 Constraint Programming

Assignment (2)

A
B

C
D

E

F

Graph Colouring (0/1 or Booleans – but not SAT)

Assign values to A1,A2, .., F1,F2
s.t. Ar, Ab, Ag, .., Fr, Fb, Fg Î {0,1}

% one and only one colour for A, B, ..., F
Ar + Ab + Ag = 1;
....

% different colours for A and B, ...
Ar + Br <= 1; Ab + Bb <= 1; Ag + Bg <= 1;

....

A
B

C
D

E

F

Graph Colouring (Finite Domains)
Assign values to A, .., F,

s.t. A, B, .., F Î {red, blue, green}
A ¹ B, A ¹ C, A ¹ D,
B ¹ C, B ¹ F, C ¹ D, C ¹ E, C ¹ F
D ¹ E, E ¹ F

7

21 September 2020 Constraint Programming

Assignment (3)

Q1

Q2

Q3

Q4

N-queens (Finite Domains):

Assign Values to Q1,..., Qn Î {1,.., n}

s.t. "i¹j noattack (Qi, Qj)

Latin Squares (similar to Sudoku):
Assign Values to X11,..., X33 Î {1,.., 3}

s.t. "k "i "j≠i Xki ¹ Xkj % same row

"k "i "j≠i Xik ¹ Xjk % same column

X11 X12 X13
X21 X22 X23
X31 X32 X33

Magic Squares:
Assign Values to X11,..., X33 Î {1,..,9}
s.t. "i "j¹i Sk Xki = Sk Xkj = M % same rows sum

"i "j¹i Sk Xik = Sk Xjk = M % same cols sum
Sk Xkk = Sk Xk,n-k+1 = M % diagonals
"i¹k Ú "j¹l Xij ¹ Xkl % all different

X11 X12 X13
X21 X22 X23
X31 X32 X33

8

21 September 2020 Constraint Programming

Assignment (3)

Travelling Salesperson (Finite Domains)
Find values for A, B, C, D Î {1,..,4}

s.t. A ¹ B, ..., C ¹ D
% a permutation of [A,B,C,D]
if A = B+1 then XA = Lba,
...
if D = C+1 then XD = Lcd
XA + XB + XC + XD £ k

A B

C D

23

18

33

17 1321

Travelling Salesperson (0/1 or Booleans – but not SAT)
Find decision values for Xab...Xdc Î {0,1}

s.t. "a Sk Xak = 1

"a Sk Xka = 1

... no subcycle constraints

SaSb Xab Lab < k

A B

C D

23

18

33

17 1321

9

21 September 2020 Constraint Programming

Mixed: Assignment and Scheduling

Goal (Example): Assign values to variables

- Variables:
§ Start Times, Durations, Resources used

- Domain:
§ Integers (typicaly) or Rationals/Reals

- Constraints:
§ Compatibility (Conditional, Disjunctive, Difference, Arithmetic Relations)

Job-Shop
Assign values to Sij Î {1,..,n} % time slots

and to Mij Î {1,..,m} % machines available
% precedence within job

"j "i < k Sij + Dij ≤ Skj
% either no-overlap or different machines

"i,j,k,l (Mij = Mkl) → (Sij + Dij ≤ Skl) Ú (Skl + Dkl ≤ Sij)

J1

J2

J3

J4

1 2 3

1 2 3

1 2 3

1 2 3

10

21 September 2020 Constraint Programming

Filling and Containment

Goal (Example): Assign values to variables

- Variables:
§ Point Locations

- Domain:
§ Integers (typicaly) or Rationals/Reals

- Constraints:
§ Non-overlapping (Disjunctive, Inequality)

Fiiling
Assign values to Xi Î {1,.., Xmax} % X-dimension

Yi Î {1,.., Ymax} % Y-dimension
% no-overlapping rectangles

"i,j (Xi+Lxi £ Xj) % I to the left of J
(Xj+Lxj £ Xi) % I to the right of J
(Yi+Lyi £ Yj) % I in front of J
(Yj+Lxj £ Xi) % I in back of J

D

G

I

BC
A

J
H

E

F
K

11

21 September 2020 Constraint Programming

Constraint Satisfaction Problems

- Other Examples (from CP-16):

- Finding Patterns for DataMining
- Rather than finding rules (as in ID3 /CS4.5) whole sets must be obtained
- e.g. sequences of letters in ADN / Protein searches

- Hospital Residence Problem (with pairs)
- Kind of Stable Marriage Problem but pairings make it NP-Hard
- Both Hospitals and Residents (junior doctors) have a list of preferences
- Pairs of Residents have joint preferences

12

21 September 2020 Constraint Programming

Constraint Satisfaction Problems

- Formally a constraint satisfaction problem (CSP) can be regarded as a tuple
<X, D, C>, where

- X = { X1, ... , Xn} is a set of variables

- D = { D1, ... , Dn} is a set of domains (for the corresponding variables)

- C = { C1, ... , Cm} is a set of constraints (on the variables)

- Solving a constraint problem consists of determining values xi Î Di for each
variable Xi, satisfying all the constraints C.

- Intuitively, a constraint Ci is a limitation on the values of its variables.

- More formally, a constraint Ci (with arity k) over variables Xi1, ..., Xik ranging
over domains Di1, ..., Dik is a subset of the cartesian cartesian Dj1´ ... ´ Djk.

CiÍ Dj1´ ... ´ Djk

13

21 September 2020 Constraint Programming

Constraints and Optimisation Problems

- In many cases, one is interested not only in satisfying some set of constraints
but also in finding among all solutions those that optimise a certain objective
function (minimising a cost or maximising some positive feature).

- Formally a constraint (satisfaction and) optimisation problem (CSOP or COP)
can be regarded as a tuple <V, D, C, F>, where

- X = { X1, ... , Xn} is a set of variables

- D = { D1, ... , Dn} is a set of domains (for the corresponding variables)

- C = { C1, ... , Cm} is a set of constraints (on the variables)

- F is a function on the variables

- Solving a constraint satisfaction and optimisation problem consists of
determining values xiÎ Di for each variable Xi, satisfying all the constraints C
and that optimise the objective function.

14

21 September 2020 Constraint Programming

Decision Problems are NP-complete

- All the problems presented are decision problems in that a decision has to be
made regarding the value to assign to each variable.

- Non-trivial decision making problems are untractable, i.e. they lie in the class of
NP problems.

- Formally, these are the problems that can be solved in polinomial time by a non-
deterministic machine, i.e. one that “guesses the right answer”.

- For example, in the graph colouring problem (n nodes, k colours), if one has to
assign colours to n nodes, a non-deterministic machine could guess a solution in
O(n) steps.

- As a class, NP-complete problems may be converted in polinomial time onto
other NP-complete problems (SAT, in particular).

NP Problem SAT

15

21 September 2020 Constraint Programming

Decision Problems are NP-complete

- No one has already found a polynomial algorithm to solve SAT (or any other NP
problem), and hence the conjecture P ≠ NP (perhaps one of the most challenging
open problems in computer science) is regarded as true.

- Hence, with real machines and non trivial problems, one has to guess the adequate
values for the variables and make mistakes. In the worst case, one has to test O(kn)
potential solutions.

- Just to have an idea of the complexity, the table below shows the time needed to
check kn solutions, assuming one solution is examined in 1 µsec (times in secs).

1 hour = 3.6 * 103 sec 1 year = 3.2 * 107 sec TOUniv = 4.7 * 1017 sec

10 20 30 40 50 60

2 1.0E-03 1.0E+00 1.1E+03 1.1E+06 1.1E+09 1.2E+12

3 5.9E-02 3.5E+03 2.1E+08 1.2E+13 7.2E+17 4.2E+22

4 1.0E+00 1.1E+06 1.2E+12 1.2E+18 1.3E+24 1.3E+30

5 9.8E+00 9.5E+07 9.3E+14 9.1E+21 8.9E+28 8.7E+35

6 6.0E+01 3.7E+09 2.2E+17 1.3E+25 8.1E+32 4.9E+40

n

k

nk

16

kn

21 September 2020 Constraint Programming

Decision Problems are NP-complete

- Still, constraint solving problems are NP-complete problems (as SAT is).

- If a non-deterministic machine (that guesses correctly) can solve a problem in
polynomial time, then a real deterministic machine can check in polinomial time
whether a potential solution satisfies all the constraints.

- More important: with an appropriate search strategy, many instances of NP-
complete problems can be solved in quite acceptable times.

- Hence, search plays a fundamental role in solving this kind of problems.
Adequate search methods and appropriate heuristics can often solve large
instances of these problems in very acceptable time.

17

21 September 2020 Constraint Programming

Search Strategies

- There are two main types of search strategies that have been adopted to solve
combinatorial problems:

Complete Backtrack Search Methods:

- Solutions are incrementally completed, by assigning values to “undecided”
variables and backtrack whenever any constraint is violated;

- These methods are complete: if a solution exists it is found in finite time.

- More importantly, they can proof non-satisfiability.

Incomplete Local Search Methods:

- Complete “solutions” are incrementally repaired, by changing the values
assigned to some of the variables until a “real solution” is found;

- These local search methods are not guaranteed to avoid revisiting the
same solutions time and again and are therefore incomplete.

- They are often very efficient to find very good solutions (local optima)

18

21 September 2020 Constraint Programming

Optimisation Problems are NP-hard

- Optimisation problems are typically NP-hard problems in that solving them is at
least as difficult as solving the corresponding decision problem.

- In practice these problems cannot be solved in polynomial time by a non-
deterministic machine, nor can they be checked by a deterministic machine.

- In fact, to find an optimal solution it is not enough to find it ... It is necessary to
show that it is better than all other solutions!

- Being harder than the decision problems, optimisation problems also require
adequate search strategies, if larger instances are to be solved.

- In complete search, detection of failure and subsequent backtracking may
be imposed if the partial solution can be proved to be no better than one
already found (branch & bound).

19

21 September 2020 Constraint Programming

Declarative Programming

- Programming a combinatorial problem thus requires

§ The specification of the constraints of the problem; and

§ The specification of a search algorithm

- The separation of these two aspects has for a long time been advocated by
several programming paradigms, namely functional programming and logic
programming.

- Logic programming in particular has a built-in mechanism for search
(backtracking) that makes it easy to extend into constraint (logic) constraint
programming, by “replacing” its underlying resolution to constraint
propagation. A number of Constraint Logic Programming languages have
been proposed (CHIP, ECLiPSE, GNU Prolog, SICStus) to explore this
extension of logic programming.

- More recently, other declarative languages such as Comet (OO-like), Choco
(Java Library) and Zinc, provide more convenient data structures for
modelling, maintaining a declarative approach.

20

21 September 2020 Constraint Programming

Constraint Programming

Constraint Programming (and Languages) is driven by a number of goals

- Expressivity

- Constraint Languages should be able to easily specify the variables,
domains and constraints (e.g. conditional, global, etc...);

- Declarative Nature

- Ideally, programs should specify the constraints to be solved, not the
algorithms used to solve them

- Efficiency

- Solutions should be found as efficiently as possible, i.e. with the
minimum possible use of resources (time and space).

These goals are partially conficting goals and have led to the various
developments in this research and development area.

21

21 September 2020 Constraint Programming 22

Search Methods – Pure Backtracking

- In this course we will focus on these two aspects of Constraint Programming:

§ Declarative Modelling

• How to specify as naturally as possible the problem we want to solve

§ Efficient Execution

• How to solve the problems thus specified as efficiently as possible,
combining, as we should study, Heuristics with constraint propagation.

- These topics will be studied in the context of two types of domains

§ Finite Domains

• discrete domains, basically integer intervals)

§ Continuous Domains

• in principle, the difference between two values can be as small as we
may want.

21 September 2020 Constraint Programming

Constraint Programming – Finite Domains

- In Finite domains we will see that the the efficiency obtained in solving a problem with
CP depends on many issues that will be addressed in the course:

1. Formalization of Constraint Propagation

2. Types of constraints and their main features

3. Alternative models

a. Redundant Constraints

b. Symmetry Breaking Constraints

4. Heuristics that are most commonly used

5. Testing these techniques with Choco in several non-trivial examples

- These aspects will be studied in the first part of the course (first 6 weeks).

23

21 September 2020 Constraint Programming

Constraint Programming – Continuous Domains

Continuous constraints require somewhat different methods for constraint propagation
as well as enumeration. The main differences to consider are:

1. In a domain lo .. hi there are infinite values to consider. Hence enumeration cannot
be a simple test of the alternative values, backtracking if necessary.

2. Constraints should consider variables whose domains are intervals, and adapt
standard arithmetic to consider such domains – interval arithmetic.

3. Advanced methods can be used to propagate constraints, more sophisticated than
naïve methods adapted from the finite domains (e.g. interval Newton).

4. Approximations are often necessary (e.g. rounding off arithmetic operations) and
care must be taken that errors are not made (so as to loose solutions).

- Constraints in these continuous domains will be covered in the second part of the
course, by Prof. Jorge Cruz.

24

21 September 2020 Constraint Programming

Constraint Programming – Continuous Domains

A summary of this second part:

1. Continuous Constraint Satisfaction Problems

2. Continuous Constraint Reasoning

a. Representation of Continuous Domains

b. Pruning and Branching

3. Solving Continuous CSPs

a. Constraint Propagation

b. Consistency Criteria

4. Practical Examples

25

21 September 2020 Constraint Programming

Constraint Programming – Continuous Domains

A major concern of dealing with continuous constraints regards constraint propagation.

For these part of the course some topics will be dealt more formally, namely:

1. Interval Constraints Overview

2. Intervals, Interval Arithmetic and Interval Functions

3. Interval Newton Method

4. Associating Narrowing Functions to Constraints

5. Constraint Propagation and Consistency Enforcement

26

21 September 2020 Constraint Programming

Assessment

- Evaluation consists of the following components
§ Project 1 – Finite Domains Problem
§ Mini-Test 1 – Finite Domains Concepts
§ Project 2 – Continuous Domains Problem
§ Mini-Test 2 – Continuous Domains Concepts

- Projects are made in team work (2 students per group) and the tests assess the
students individually.

- All components have the same weight for the final grade.

- Students that do not get the minimum grade, are allowed to do a repetition exam if they
get at least an average grade of 8/20 in the two projects.

- Exact dates to be announced –
§ Project 1 and Mini-test 1 at mid-term (end October / early November)
§ Project 2 and Mini-test 2 at the end of semester (end December /early January)

27

21 September 2020 Constraint Programming

Constraint Propagation

- As mentioned, non trivial constraint satisfaction problems are typically NP-
complete so there is no known algorithm to solve them in polynomial time.

- In practice, this means that solving them require some form of search.

- Given a problem with n variables each with k values in its domain, the number
of possible solutions is kn. As such brute force algorithms that explore all the
possibilities are doomed to be unpractical in instances with a relatively low
number of variables.

1 hour = 3.6 * 103 sec 1 year = 3.2 * 107 sec TOUniv = 4.7 * 1017 sec

28

10 20 30 40 50 60

2 1.0E-03 1.0E+00 1.1E+03 1.1E+06 1.1E+09 1.2E+12

3 5.9E-02 3.5E+03 2.1E+08 1.2E+13 7.2E+17 4.2E+22

4 1.0E+00 1.1E+06 1.2E+12 1.2E+18 1.3E+24 1.3E+30

5 9.8E+00 9.5E+07 9.3E+14 9.1E+21 8.9E+28 8.7E+35

6 6.0E+01 3.7E+09 2.2E+17 1.3E+25 8.1E+32 4.9E+40

n

k

nkkn

21 September 2020 Constraint Programming

Constraint Propagation

- Given the need for search it is very important to decrease the space of potential
solutions that have to be tested.

- This is a key goal of constraint propagation: take into account each and all of
the constraints of the problem to decrease the possible values a variable might
take.

- More specifically, constraint propagation uses constraints actively: the domain
of a variable should be decreased if it no longer makes it possible to satisfy the
constraint.

- Constraint propagation can be illustrated with the well known SENDMORY
cripto-arithmetic problem.

- We will use the model that constrains the variables in the sums of each column,
including the carries.

29

C4 C3 C2 C1
S E N D

+ M O R E
M O N E Y

21 September 2020 Constraint Programming

Constraint Propagation

- These are the variables and domains of the problem.

- With a naïve approach, and assuming that the search is only done in the digit
variables (not in the carries, that are implied) the size of the search space is
(since there are 8 variables, each with 10 values in the domain)

810 = 1073 741 824 ≈ 109

- Even if we consider during search that the variables are all different the size of
the search space is

10 ✕ 9 ✕ … ✕ 3 = 1 814 400 ≈ 2*106

30

C4 C3 C2 C1
S E N D

+ M O R E
M O N E Y

0. [S,E,N,D,M,O,R,Y] in 0..9
1. [C1, C2, C3, C4] in 0..1
2. alldif([S,E,N,D,M,O,R,Y])
3. M > 0
4. S > 0
5. D + E = Y + 10 * C1
6. N + R + C1 = E + 10 * C2
7. E + O + C2 = N + 10 * C3
8. S + M + C3 = O + 10 * C4
9. C4 = M

21 September 2020 Constraint Programming

Constraint Propagation

- We now analyse how to decrease the search space. We start by noting that both
C4 and M must be 1, given constraints 3, 9, and 1.

- In fact
• M must be greater than 0 (constraint 3);
• M must be equal to C4 (constraint 9);

- But since
• C4 may only be 0 or 1 (domain constraint 1)

It must be
• M = C4 = 1

31

C4 C3 C2 C1
S E N D

+ M O R E
M O N E Y

0. [S,E,N,D,M,O,R,Y] in 0..9
1. [C1, C2, C3, C4] in 0..1
2. alldif([S,E,N,D,M,O,R,Y])
3. M > 0
4. S > 0
5. D + E = Y + 10 * C1
6. N + R + C1 = E + 10 * C2
7. E + O + C2 = N + 10 * C3
8. S + M + C3 = O + 10 * C4
9. C4 = M

1 C3 C2 C1
S E N D

+ 1 O R E
1 O N E Y

21 September 2020 Constraint Programming

Constraint Propagation

- Now constraint 8 can be rewritten as S = O +9 - C3.

- Since S cannot be greater than 9, there are two possibilities here.
• S = 9 and O = C3; or
• S = 8 and O = C3 + 1

- Let us explore the first hypothesis. Since
• O ≠ 1 (as it must be different from M=1); and
• O = C3
the only remaining possibility, as C3 must be 0 or 1 is
• O = 0 ; and
• C3 = 0

32

1 C3 C2 C1
S E N D

+ 1 O R E
1 O N E Y

0. [S,E,N,D,M,O,R,Y] in 0..9
1. [C1, C2, C3, C4] in 0..1
2. alldif([S,E,N,D,M,O,R,Y])
3. M > 0
4. S > 0
5. D + E = Y + 10 * C1
6. N + R + C1 = E + 10 * C2
7. E + O + C2 = N + 10 * C3
8. S + 1 + C3 = O + 10
9. C4 = M

1 0 C2 C1
9 E N D

+ 1 0 R E
1 0 N E Y

21 September 2020 Constraint Programming

Constraint Propagation

- Now constraint 7 can be rewritten as N = E + C2.

- Since E and N must be different it must be the case that
• C2 = 1 and
• N = E + 1

33

1 0 C2 C1
9 E N D

+ 1 0 R E
1 0 N E Y

0. [S,E,N,D,M,O,R,Y] in 0..9
1. [C1, C2, C3, C4] in 0..1
2. alldif([S,E,N,D,M,O,R,Y])
3. M > 0
4. S > 0
5. D + E = Y + 10 * C1
6. N + R + C1 = E + 10 * C2
7. E + O + C2 = N + 10 * C3
8. S + 1 + C3 = O + 10
9. C4 = M

1 0 1 C1
9 E N D

+ 1 0 R E
1 0 N E Y

21 September 2020 Constraint Programming

Constraint Propagation

- Combining constraints 6 and 7 we obtain
• R + 1 + C1 = 10
• R = 9 - C1

- Since we know that R cannot be 9 (the value assigned to S) given constraint 2,
then the only possible assignment is
• R = 8
• C1 = 1

34

1 0 1 C1
9 E N D

+ 1 0 R E
1 0 N E Y

0. [S,E,N,D,M,O,R,Y] in 0..9
1. [C1, C2, C3, C4] in 0..1
2. alldif([S,E,N,D,M,O,R,Y])
3. M > 0
4. S > 0
5. D + E = Y + 10 * C1
6. N + R + C1 = E + 10
7. N = E + 1
8. S + 1 + C3 = O + 10
9. C4 = M

1 0 1 1
9 E N D

+ 1 0 8 E
1 0 N E Y

21 September 2020 Constraint Programming

Constraint Propagation

- Now, we may note that
• Y ≥ 2 , since Y must be different from M and O (constraint 2)
• E ≤ 6, since N = E + 1 and both E and N must be less than 8, since they must

be different from S and R (constraint 2)
- Hence constraint 5 can be rewritten as

• D = Y – E + 10; and hence
• D ≥ 2 - 6 + 10 = 6

- Now D can only take values 6 or 7 (given constraint 2), so we will try first
• D = 6

and rewrite constraint 5 as E = Y + 4.

35

1 0 1 1
9 E N D

+ 1 0 8 E
1 0 N E Y

0. [S,E,N,D,M,O,R,Y] in 0..9
1. [C1, C2, C3, C4] in 0..1
2. alldif([S,E,N,D,M,O,R,Y])
3. M > 0
4. S > 0
5. D + E = Y + 10
6. N + R + C1 = E + 10
7. N = E + 1
8. S + 1 + C3 = O + 10
9. C4 = M

1 0 1 1
9 E N 6

+ 1 0 8 E
1 0 N E Y

21 September 2020 Constraint Programming

Constraint Propagation

- But this is not possible, since in this case,
• E must be greater than 6, and
• N would be even greater, but it cannot since values 8 and 9 are taken by

variables R and S (constraint 2)

- Then we must backtrack and try instead
• D = 7

and rewrite constraint 5 as E = Y + 3.

36

1 0 1 1
9 E N 6

+ 1 0 8 E
1 0 N E Y

0. [S,E,N,D,M,O,R,Y] in 0..9
1. [C1, C2, C3, C4] in 0..1
2. alldif([S,E,N,D,M,O,R,Y])
3. M > 0
4. S > 0
5. E = Y + 4
6. N + R + C1 = E + 10
7. N = E + 1
8. S + 1 + C3 = O + 10
9. C4 = M

1 0 1 1
9 E N 7

+ 1 0 8 5
1 0 N E Y

21 September 2020 Constraint Programming

Constraint Propagation

- Trying E = 5 and propagating we get
• N = 6 (through constraint 7) and
• Y = 2 (through constraint 5)

thus solving the problem.

37

1 0 1 1
9 E N 7

+ 1 0 8 5
1 0 N E Y

0. [S,E,N,D,M,O,R,Y] in 0..9
1. [C1, C2, C3, C4] in 0..1
2. alldif([S,E,N,D,M,O,R,Y])
3. M > 0
4. S > 0
5. E = Y + 3
6. N + R + C1 = E + 10
7. N = E + 1
8. S + 1 + C3 = O + 10
9. C4 = M

1 0 1 1
9 5 6 7

+ 1 0 8 5
1 0 6 5 2

21 September 2020 Constraint Programming

Constraint Propagation

- In this case, the active use of the constraints of the problem allowed us to solve
the problem very efficiently
• Only 2 choice points
• Only one backtracking

- In general constraint propagation is at the heart of constraint Programming for
two main reasons:
• It decreases the size of the search space

• the size of the domains and the number of choice points
• It provides useful information to guide search

• NP problems still require heuristics, given their exponential size

- However, in this case, we adopted some special purpose reasoning to obtain
propagation, namely
• Combining several constraints
• Using adequate arithmetic knowledge

- These techniques will be used later, when dealing with global constraints.

38

21 September 2020 Constraint Programming

Constraint Propagation

- For the moment we may consider a simpler form of reasoning to achieve
constraint propagation, that will be illustrated with the 8-queens problem

- First we show the use of backtrack alone towards solving the problem, and
compare it later with the combined use of backtrack and constraint propagation.

- The simplest backtracking strategy uses constraints passively:

• Whenever a value is assigned a variable, the constraints whose variables
have their variables all assigned are checked for satisfaction

• If this is not the case, the search backtracks (chronological backtrack).

- This is a typical generate and test procedure

• Firstly, values are generated

• Secondly, the constraints are tested for satisfaction.

- Of course, tests should be done as soon as possible, i.e. a constraint is
checked whenever all its variables are assigned values.

39

40

Backtracking

Tests 0 Backtracks 0
21 September 2020 Constraint Programming

41

Backtracking

Tests 0 +1 = 1 Backtracks 0

Q1 \= Q2, L1+Q1 \= L2+Q2, L1+Q2 \= L2+Q1.

21 September 2020 Constraint Programming

42

Backtracking

Q1 \= Q2, L1+Q1 \= L2+Q2, L1+Q2 \= L2+Q1.

Tests 1 +1 = 2 Backtracks 0
21 September 2020 Constraint Programming

43

Backtracking

Q1 \= Q2, L1+Q1 \= L2+Q2, L1+Q2 \= L2+Q1.

Tests 2 +1 = 3 Backtracks 0
21 September 2020 Constraint Programming

44

Backtracking

Tests 3 +1 = 4 Backtracks 0
21 September 2020 Constraint Programming

45

Backtracking

Tests 4 +2 = 6 Backtracks 0
21 September 2020 Constraint Programming

46

Backtracking

Tests 6 + 1 = 7 Backtracks 0
21 September 2020 Constraint Programming

47

Backtracking

Tests 7 + 2 = 9 Backtracks 0
21 September 2020 Constraint Programming

48

Backtracking

Tests 9 + 2 = 11 Backtracks 0
21 September 2020 Constraint Programming

49

Backtracking

Tests 11 + 1 + 3 = 15 Backtracks 0
21 September 2020 Constraint Programming

50

Backtracking

Tests 15+1+4+2+4 = 26 Backtracks 0
21 September 2020 Constraint Programming

51

Backtracking

Tests 26+1 = 27 Backtracks 0
21 September 2020 Constraint Programming

52

Backtracking

Tests 27 + 3 = 30 Backtracks 0
21 September 2020 Constraint Programming

53

Backtracking

Tests 30+2 = 32 Backtracks 0
21 September 2020 Constraint Programming

54

Backtracking

Tests 32 + 4 = 36 Backtracks 0
21 September 2020 Constraint Programming

55

Backtracking

Tests 36 + 3 = 39 Backtracks 0
21 September 2020 Constraint Programming

56

Backtracking

Tests 39 + 1 = 40 Backtracks 0
21 September 2020 Constraint Programming

57

Backtracking

Tests 40 + 2 = 42 Backtracks 0
21 September 2020 Constraint Programming

58

Backtracking

Tests 42 + 3 = 45 Backtracks 0
21 September 2020 Constraint Programming

59

Backtracking

Tests 45 Backtracks 0+ 1 = 1

Q6 Fails

Backtracks
to

Q5

21 September 2020 Constraint Programming

60

Backtracking

Tests 45 Backtrackings 1
21 September 2020 Constraint Programming

61

Backtracking

Tests 45 + 1 = 46 Backtracks 1
21 September 2020 Constraint Programming

62

Backtracking

Tests 46 + 2 = 48 Backtracks 1
21 September 2020 Constraint Programming

63

Backtracking

Tests 48 + 3 = 51 Backtracks 1
21 September 2020 Constraint Programming

64

Backtracking

Tests 51 + 4 = 55 Backtracks 1
21 September 2020 Constraint Programming

65

Backtracking

Tests 55+1+3+2+4+3+1+2+3 = 74 Backtracks 1+2 = 3

Q6 Fails

Backtracks
to

Q5
and next to

Q4

21 September 2020 Constraint Programming

66

Backtracking

Tests 74+2+1+2+3+3= 85 Backtracks 3
21 September 2020 Constraint Programming

67

Backtracking

Tests 85 + 1 + 4 = 90 Backtracks 3
21 September 2020 Constraint Programming

68

Backtracking

Tests 90 +1+3+2+5 = 101 Backtracks 3
21 September 2020 Constraint Programming

69

Backtracking

Tests 101+1+5+2+4+3+6= 122 Backtracks 3
21 September 2020 Constraint Programming

70

Backtracking

Tests 122+1+5+2+6+3+6+4+1= 150 Backtracks 3+1=4

Q8 Fails

Backtracks
to

Q7

21 September 2020 Constraint Programming

71

Backtracking

Tests 150+1+2= 153 Backtracks 4+1=5

Q7 Fails

Backtracks
to

Q6

21 September 2020 Constraint Programming

72

Backtracking

Tests 153+3+1+2+3= 162 Backtracks 5+1=6

Q6 Fails

Backtracks
to

Q5

21 September 2020 Constraint Programming

73

Backtracking

Tests 162+2+4= 168 Backtracks 6
21 September 2020 Constraint Programming

74

Backtracking

Tests 168+1+3+2+5+3+1+2+3= 188 Backtracks 6+1 = 7

Q6 Fails

Backtracks
to

Q5

21 September 2020 Constraint Programming

75

Backtracking

Tests 188+1+2+3+4= 198 Backtracks 7+1=8

Q5 Fails

Backtracks
to

Q4

21 September 2020 Constraint Programming

76

Backtracking

Tests 198 + 3 = 201 Backtracks 8
21 September 2020 Constraint Programming

77

Backtracking

Tests 201+1+4 = 206 Backtracks 8
21 September 2020 Constraint Programming

78

Backtracking

Tests 206+1+3+2+5 = 217 Backtracks 8
21 September 2020 Constraint Programming

79

Backtracking

Tests 217+1+5+2+5+3+6 = 239 Backtracks 8
21 September 2020 Constraint Programming

80

Backtracking

Tests 239+1+5+2+4+3+6+7+7= 274 Backtracks 8+1 = 9

Q8 Fails

Backtracks
to

Q7

21 September 2020 Constraint Programming

81

Backtracking

Tests 274+1+2= 277 Backtracks 9+1=10

Q7 Fails

Backtracks
to

Q6

21 September 2020 Constraint Programming

82

Backtracking

Tests 277+3+1+2+3= 286 Backtracks 10+1=11

Q6 Fails

Backtracks
to

Q5

21 September 2020 Constraint Programming

83

Backtracking

Tests 286+2+4= 292 Backtracks 11
21 September 2020 Constraint Programming

84

Backtracking

Tests 292+1+3+2+5+3+1+2+3= 312 Backtracks 11+1=12

Q6 Fails

Backtracks
to

Q5

21 September 2020 Constraint Programming

85

Backtracking

Tests 312+1+2+3+4= 322 Backtracks 12+2=14

Q5 Fails

Backtracks
to

Q4
and next to

Q3

21 September 2020 Constraint Programming

86

Backtracking

Tests 322 + 2 = 324 Backtracks 14

Q1 = 1

Q2 = 3
Q3 = 5

Impossible !

21 September 2020 Constraint Programming

21 September 2020 Constraint Programming 87

Backtracking + Propagation

- A more efficient backtracking search strategy sees constraints as active
constructs and interleaves backtracking with constraint propagation:

• Whenever a variable is assigned a variable, the consequences of such
assignment are taken into account in all the constraints it apperas to narrow
the possible values of the variables not yet assigned.

• If for one such variable there are no values to chose from, then a failure
occurs and the search backtracks.

- This is a typical test and generate procedure

• Firstly, values are tested to check their possible use.

• Secondly, the values are assigned to the variables amopng the remaining
values.

- Clearly, the reasoning that is done should have the adequate complexity
otherwise the gains obtained from the narrowing of the search space are offset
by the costs of such narrowing.

88

Backtracking + Propagation

Tests 0 Backtracks 0
21 September 2020 Constraint Programming

89

Backtracking + Propagation

1 1

1

1

1

1

11

1

1

1

1

1

1

Tests 8 * 7 = 56 Backtracks 0

Q1 #\= Q2, L1+Q1 #\= L2+Q2, L1+Q2 #\= L2+Q1.

21 September 2020 Constraint Programming

90

Backtracking + Propagation

1 1

1

1

1

1

11

1

1

1

1

1

12

2

2

2

2

2

2

2

2

2

2

Tests 56 + 6 * 6 = 92 Backtracks 0
21 September 2020 Constraint Programming

91

Backtracking + Propagation

1 1

1

1

1

1

11

1

1

1

1

1

12

2

2

2

2

2

2

2

2

2

2

3

3

3

3

3

33

Tests 92 + 21 = 113 Backtracks 0
21 September 2020 Constraint Programming

21 September 2020 Constraint Programming 92

Backtracking + Propagation + Heuristics

- In both types of backtrack search (pure backtracking as well as in backtracking +
propagation) there is a need for heuristics.

- After all, in decision problems with n variables, a perfect heuristics would find a
solution (if there is one) in exactly n steps (i.e. with n decisions – polynomial time).

- Of course, there are no such perfect heuristics for non-trivial problems (this would
imply P = NP, a quite unlikely situation), but good heuristics can nonetheless
significantly decrease the search space. Typically a heuristics consists of

• Variable selection: The selection of the next variable to assign a value

• Value selection: Which value to assign to the variable

- The adoption of a backtrack + propagation search method allows better heuristics
to be used, that are not available in pure backtrack search methods.

- In particular a very simple heuristics, first-fail, is often very useful: whenever a
variable is restricted to take a single value, select that variable and value.

93

Backtracking + Propagation + Heuristics

1 1

1

1

1

1

11

1

1

1

1

1

12

2

2

2

2

2

2

2

2

2

2

3

3

3

3

3

33

Tests 92 + 21 = 113 Backtracks 0

Which
queen to

label?

21 September 2020 Constraint Programming

94

Backtracking + Propagation + Heuristics

1 1

1

1

1

1

11

1

1

1

1

1

12

2

2

2

2

2

2

2

2

2

2

3

3

3

3

3

33

Tests 92 + 21 = 113 Backtracks 0

Q6

may only
take value

4

21 September 2020 Constraint Programming

95

Backtracking + Propagation + Heuristics

1 1

1

1

1

1

11

1

1

1

1

1

12

2

2

2

2

2

2

2

2

2

2

3

3

3

3

3

33

6

6

6

6

6 6

Tests 113+3+3+3+4 = 126 Backtracks 0
21 September 2020 Constraint Programming

96

Backtracking + Propagation + Heuristics

1 1

1

1

1

1

11

1

1

1

1

1

12

2

2

2

2

2

2

2

2

2

2

3

3

3

3

3

33

6

6

2

6

6 6

Tests 126 Backtracks 0

Q8

may only
take value

7

21 September 2020 Constraint Programming

97

Backtracking + Propagation + Heuristics

1 1

1

1

1

1

11

1

1

1

1

1

12

2

2

2

2

2

2

2

2

2

2

3

3

3

3

3

33

6

6

2

6

6 6

Tests 126 Backtracks 0
21 September 2020 Constraint Programming

98

Backtracking + Propagation + Heuristics

1 1

1

1

1

1

11

1

1

1

1

1

12

2

2

2

2

2

2

2

2

2

2

3

3

3

3

3

33

6

6

2

6

6 6

8

8

Tests 126+2+2+2=132 Backtracks 0
21 September 2020 Constraint Programming

99

Backtracking + Propagation + Heuristics

1 1

1

1

1

1

11

1

1

1

1

1

12

2

2

2

2

2

2

2

2

2

2

3

3

3

3

3

33

6

6

2

6

6 6

8

8

Tests 132 Backtracks 0

Q4

may only
take value

8

21 September 2020 Constraint Programming

100

Backtracking + Propagation + Heuristics

1 1

1

1

1

1

11

1

1

1

1

1

12

2

2

2

2

2

2

2

2

2

2

3

3

3

3

3

33

6

6

2

6

6 6

8

8

Tests 132 Backtracks 0
21 September 2020 Constraint Programming

101

Backtracking + Propagation + Heuristics

1 1

1

1

1

1

11

1

1

1

1

1

12

2

2

2

2

2

2

2

2

2

2

3

3

3

3

3

33

6

6

2

6

6 6

8

8

4

Tests 132+2+1=135 Backtracks 0
21 September 2020 Constraint Programming

102

Backtracking + Propagation + Heuristics

1 1

1

1

1

1

11

1

1

1

1

1

12

2

2

2

2

2

2

2

2

2

2

3

3

3

3

3

33

6

6

2

6

6 6

8

8

4

Tests 135 Backtracks 0

Q5

may only
take value

2

21 September 2020 Constraint Programming

103

Backtracking + Propagation + Heuristics

1 1

1

1

1

1

11

1

1

1

1

1

12

2

2

2

2

2

2

2

2

2

2

3

3

3

3

3

33

6

6

2

6

6 6

8

8

4

Tests 135 Backtracks 0
21 September 2020 Constraint Programming

104

Backtracking + Propagation + Heuristics

1 1

1

1

1

1

11

1

1

1

1

1

12

2

2

2

2

2

2

2

2

2

2

3

3

3

3

3

33

6

6

2

6

6 6

8

8

4

5

Tests 135+1=136 Backtracks 0
21 September 2020 Constraint Programming

105

Backtracking + Propagation + Heuristics

1 1

1

1

1

1

11

1

1

1

1

1

12

2

2

2

2

2

2

2

2

2

2

3

3

3

3

3

33

6

6

2

6

6 6

8

8

4

5

Tests 136 Backtracks 0
21 September 2020 Constraint Programming

106

Backtracking + Propagation + Heuristics

1 1

1

1

1

1

11

1

1

1

1

1

12

2

2

2

2

2

2

2

2

2

2

3

3

3

3

3

33

6

6

2

6

6 6

8

8

4

5

Tests 136 Backtracks 0+1=1

Q7

may take NO
value

Failure!

Backtracks
... to Q3 !

21 September 2020 Constraint Programming

107

Backtracking + Propagation + Heuristics

1 1

1

1

1

1

11

1

1

1

1

1

12

2

2

2

2

2

2

2

2

2

2

3

33

3

3

3

3

3

Tests 136 Backtracks 1

3

Tests
136

(324)
Backtracks

1
(14)

Q1 = 1

Q2 = 3
Q3 = 5

Impossible !

21 September 2020 Constraint Programming

21 September 2020 Constraint Programming 108

Backtracking + Propagation + Heuristics

- The adoption of constraint propagation and backtrack is more efficient for three
main reasons:

• Early detection of Failure:

§ In this case, after placing queens Q1 = 1, Q2 = 3 and Q3 = 5, a failure is
detected without any backtracking.

• Relevant backtracking:

§ Although a failure is detected in Q7, backtracking is done to Q3, and to none
of the other queens (Q4, Q5, Q6 and Q8, that are not relevant).

§ With pure backtracking many backtracks were done to undo choices in these
queens.

• Heuristics:

§ Constraint Propagation makes it easy to adopt heuristics based on the
remaining values of the unassigned variables.

21 September 2020 Constraint Programming 109

Constraints: Basic Concepts

- To allow a study of constraint propagation in general, we start with some
definitions and notation:

Definition (Domain of a Variable):

• The domain of a variable is the set of values that can be assigned to that
variable.

• Given some variable x, its domain will be usually referred to as dom(x) or,
simply, Dx.

- Example: The N queens problem may be modelled by means of N variables, q1
to qn, all with the domain from 1 to n.

Dom(qi) = {1,2, ..., n} or qi :: 1..n.

- Note: In the first part of this course we will deal with Finite Domains, i.e.
domains that are finite sets of values.

21 September 2020 Constraint Programming 110

Constraints: Basic Concepts

- To formalise the notion of the state of a variable (i.e. its assignment with one of
the values in its domain) we have the following

Definition (Label):

• A label is a Variable-Value pair, where the Value is one of the elements of
the domain of the Variable.

- The notion of a partial solution, in which some of the variables of the problem
have already assigned values, is captured by the following

Definition (Compound Label):

• A compound label is a set of labels with distinct variables.

21 September 2020 Constraint Programming 111

Constraints: Basic Concepts

- We come now to the formal definition of a constraint

Definition (Constraint):

• Given a set of variables, a constraint is a set of compound labels on these
variables.

- Alternatively, a constraint may be defined simply as a relation, i.e. a subset of
the cartesian product of the domains of the variables involved in that constraint.

- For example, given a constraint cijk involving variables xi, xj and xk, then

cijk Í dom(xi) x dom(xj) x dom(Xk)

21 September 2020 Constraint Programming 112

Constraints: Basic Concepts

- Given a constraint c, the set of variables involved in that constraint is denoted
by vars(c).

- Simetrically, the set of constraints in which variable x participates is denoted by
cons(x).

- Notice that a constraint is a relation, not a function, so that it is always cij = cji.

- In practice, constraints may be specified by

• Extension: through an explicit enumeration of the allowed compound labels;

• Intension: through some predicate (or procedure) that determines the
allowed compound labels.

21 September 2020 Constraint Programming 113

Constraints: Basic Concepts

- For example, constraint c13 involving queens 1 and 3 in the 4-queens problem,
may be specified

• By extension (label form):

c13 = {{q1-1,q3-2},{q1-1,q3-4},{q1-2,q3-1},{q1-2,q3-3},

{q1-3,q3-2},{q1-3,q3-4},{q1-4,q3-1},{q1-4,q3-3}}.

or, in tuple (relational) form, omitting the variables

c13 = {<1,2>,<1,4>,<2,1>,<2,3>,<3,2>,<3,4>,<4,1>,<4,3>}.

• By intension:

c13 = (q1 ¹ q3) Ù (1+q1 ¹ 3+q3) Ù (3+q1 ¹ 1+q3).

21 September 2020 Constraint Programming 114

Constraints: Basic Concepts

Definition (Constraint Arity):

• The arity of some constraint c is the number of variables over which the
constraint is defined, i.e. the cardinality of set Vars(c).

- Despite the fact that constraints may have an arbitrary arity, an important
subset of the constraints is the set of binary constraints.

- The importance of such constraints is two-fold

• All constraints may be converted into binary constraints

• A number of concepts and algorithms are appropriate for these constraints.

21 September 2020 Constraint Programming 115

Constraints: Basic Concepts

Definition (Constraint Satisfaction 1):

• A compound label satisfies a constraint if their variables are the same and if
the compound label is a member of the constraint.

- In practice, it is convenient to generalise constraint satisfaction to compound
labels that strictly contain the constraint variables.

Definition (Constraint Satisfaction 2):

• A compound label satisfies a constraint if its variables contain the constraint
variables and the projection of the compound label to these variables is a
member of the constraint.

21 September 2020 Constraint Programming 116

Constraints: Basic Concepts

Definition (Constraint Satisfaction Problem):

• A constraint satisfaction problem is a triple <X, D, C> where

§ X is the set of variables of the problem

§ D is the domain(s) of its variables

§ C is the set of constraints of the problem

Definition (Problem Solution):

• A solution to a constraint satisfaction problem P: <X, D, C>, is a compound
label over the variables X of the problem, which satisfies all constraints in C.

21 September 2020 Constraint Programming 117

Constraints: Basic Concepts

Definition (Constrained Optimisation Problem):

• A constrained optimization problem (COP) is a tuple < X, D, C, F > where

§ X is the set of variables of the problem

§ D is the domain(s) of its variables

§ C is the set of constraints of the problem

§ F is a function on the variables of the problem

Definition (Problem Solution):

• S is a solution of a COP P: <X, D, C, F >, iff:

§ S is a solution of the corresponding CSP P’: <X, D, C>;

§ No other solution S’ has a better value for function F

21 September 2020 Constraint Programming 118

Constraints: Basic Concepts

- For convenience, the (binary) constraints of a problem may be considered as
forming a special constraint graph.

Definition (Constraint Graph or Constraint Network):

• The Constraint Graph or Constraint Network of a binary constraint
satisfaction problem is defined as follows

§ There is a node for each of the variables of the problem.

§ For each (non-trivial) constraint of the problem, involving one or two
variables, the graph contains an arc linking the corresponding nodes.

- When the problems include constraints with arbitrary arity, the Constraint
Network may be formed after converting these constraints on its binary
equivalent.

21 September 2020 Constraint Programming 119

Constraints: Basic Concepts

Example:

- The 4-queens problem may be specified by the following constraint network:

q1 in 1..4

q4 in 1..4

q3 in 1..4q2 in 1..4

C12

C23

C14

C24
C34

C13

c13:
<1,2>, <1,4>, <2,1>,
<2,3>, <3,2>, <3,4>,
<4,1>, <4,3>

cij:
qi \= qj
qi + i \= qj + j
qi - i \= qj - j

21 September 2020 Constraint Programming 120

Constraints: Basic Concepts

- An important issue to consider in solving a constraint satisfaction problem is the
existence of redundant values and labels in its constraints.

Definition (Redundant Value):

• A value in the domain of a variable is redundant, if it does not appear in any
solution of the problem.

Definition (Redundant Label):

• A compound label of a constraint is redundant if it is not the projection to
the constraint variables of a solution to the whole problem.

- Redundant values and labels increase the search space uselessly, and should
thus be avoided. There is no point in testing a value that does not appear in any
solution !

21 September 2020 Constraint Programming 121

Constraints: Basic Concepts

Example:

- The 4-queens problem only admits two solutions:

<2,4,1,3> and <3,1,4,2>.

- Hence,

• values 1 and 4 are redundant in the domain of variables q1 and q4; and

• values 2 and 3 are redundant in the domain of variables q2 and q3.

21 September 2020 Constraint Programming 122

Constraints: Basic Concepts

- Redundant values and labels increase the search space useless, and should
thus be avoided (there is no point in testing a value that does not appear in any
solution !). Hence, the following definitions:

Definition (Equivalent Problems):

• Two problems P1 = <X1, D1, C1> and P2 = <X2, D2, C2> are equivalent iff they
have the same variables (i.e. X1 = X2) and the same set of solutions.

- The “simplification” of a problem may also be formalised

Definition (Reduced Problem):

• A problem P = <X, D, C> is reduced to P’ = <X’, D’, C’> if

§ P and P’ are equivalent;

§ The domains D’ are included in D; and

§ The constraints C’ are at least as restrictive as those in C.

21 September 2020 Constraint Programming 123

Complexity of Search

- Clearly, the more reduced a problem is, the easier it is, in principle, to solve it.

- Given a problem P = <X, D, C> with n variables x1, .., xn the search space
where solutions can potentially be found (i.e. the leaves of the search tree with
compound labels {<x1-v1>, ..., <xn-vn>}) has cardinality

#S = #D1 * #D2 * ... * #Dn

- Assuming identical cardinality (or some kind of average of the domains size) for
all the variable domains, (#Di = d) the search space has cardinality

#S = dn

which is exponential on the “size” n of the problem.

21 September 2020 Constraint Programming 124

Complexity of Search

- Given a problem with initial cardinality d of its variables, and a reduced problem
whose domains have lower cardinality d’ (<d) the size of the potential search
space also decreases exponentially!

S’/S = d’n / dn = (d’/d)n

- Such exponential decrease may be very significant for “reasonably” large
values of n, as shown in the table.

10 20 30 40 50 60 70 80 90 100
7 6 4.6716 21.824 101.95 476.29 2225 10395 48560 226852 1E+06 5E+06
6 5 6.1917 38.338 237.38 1469.8 9100.4 56348 348889 2E+06 1E+07 8E+07
5 4 9.3132 86.736 807.79 7523.2 70065 652530 6E+06 6E+07 5E+08 5E+09
4 3 17.758 315.34 5599.7 99437 2E+06 3E+07 6E+08 1E+10 2E+11 3E+12
3 2 57.665 3325.3 191751 1E+07 6E+08 4E+10 2E+12 1E+14 7E+15 4E+17
d d'

S/S'
n

21 September 2020 Constraint Programming 125

Propagation in Search

- The effort in reducing the domains must be considered within the general
scheme to solve the problem.

- In Constraint (Logic) Programming, the specification of the constraints precedes
the enumeration of the variables.

Problem(Vars):-

Declaration of Variables and Domains,

Specification of Constraints,

Labelling of the Variables.

- In general, search is performed exclusively on the labelling of the variables.

- The execution model alternates enumeration with propagation, making it
possible to reduce the problem at various stages of the solving process.

21 September 2020 Constraint Programming 126

Complexity of Search

- In complete search methods, that deal with search through backtracking, the
solving method is constructive and incremental, whereby a compound label is
completed (constructive) throughout the solving process, one variable at a time
(incremental), until a solution is reached.

- However, one must check that, at every step in the construction of a solution,
the resulting label still has the potential to reach a complete solution.

Definition (k-Partial Solution):

• A k-partial solution of a constraint solving problem P = <X, D, C>, is a
compound label on a subset of k of its variables, Xk, that satisfies all the
constraints in C whose variables are included in Xk.

21 September 2020 Constraint Programming 127

Propagation in Search

- Given a problem with n variables x1 to xn, and assuming a lexicographical
variable/value heuristics, the execution model follows the following pattern to
incrementally extend partial solutions until a complete solution is obtained:

Declaration of Variables and Domains,
Specification of Constraints,

propagation, % reduction of the whole problem

% Labelling of Variables,

label(x1), % variable/value selection with backtraking

propagation, % reduction of problem {x2 ... xn}

label(x2),

propagation, % reduction of problem {x3 ... xn}

...

label(xn-1)

propagation, % reduction of problem {xn}

label(xn)

21 September 2020 Constraint Programming 128

Complexity of Search

- In practice, this potential narrowing of the search space has a cost involved in
finding the redundant values (and labels).

- A detailed analysis of the costs and benefits in the general case is extremely
complex, since the process depends highly on the instances of the problem to
be solved.

- However, it is reasonable to assume that the computational effort spent on
problem reduction is not proportional to the reduction achieved, becoming less
and less efficient.

- After some point, the gain obtained by the reduction of the search space does
not compensate the extra effort required to achieve such reduction.

21 September 2020 Constraint Programming 129

Complexity of Search

- Qualitatively, this process may be represented by means of the following picture

C
om

pu
ta

tio
na

l C
os

t

R - Reduction Cost

S- Search Cost

R+S
Combined Cost

Effort spent in solving the problem

Amount of Reduction Achieved

21 September 2020 Constraint Programming 130

Propagation: Consistency Criteria

- Consistency criteria enable to establish redundant values in the variables
domains in an indirect form, i.e. requiring no prior knowledge on the set of
problem solutions.

- Hence, procedures that maintain these criteria during the “propagation” phases,
will eliminate redundant values and so decrease the search space on the
variables yet to be enumerated.

- For constraint satisfaction problems with binary constraints, the most usual
criteria are, in increasingly complexity order,

§ Node Consistency

§ Arc Consistency

§ Path Consistency

§ i-Consistency

21 September 2020 Constraint Programming

Assessment

- Evaluation consists of the following components
§ Project 1 – Finite Domains Problem
§ Mini-Test 1 – Finite Domains Concepts
§ Project 2 – Continuous Domains Problem
§ Mini-Test 2 – Continuous Domains Concepts

- Projects are made in team work (2 students per group) and the tests assess the
students individually.

- All components have the same weight for the final grade.

- Students that do not get the minimum grade, are allowed to do a repetition exam if they
get at least an average grade of 8/20 in the two projects.

- Exact dates to be announced –
§ Project 1 and Mini-test 1 at mid-term (end October)
§ Project 2 and Mini-test 2 at the end of semester (mid December)

131

