
2020 Lecture 5: Constraint Propagation and Constraint Solving 1

Constraint Propagation and

Constraint Solving

Jorge Cruz
DI/FCT/UNL

2020

Lecture 5: Constraint Propagation and Constraint Solving 2

Constraint Propagation

2020

Fixed-Points of Narrowing Functions

Constraint Propagation

Contraction Obtained by Applying a Narrowing Function

Constraint Propagation Algorithm and its Properties

Local Consistencies

Hull-Consistency and Box-Consistency

Arc-Consistency and Interval-Consistency

Shaving and Probing

Higher Order Consistencies

Lecture 5: Constraint Propagation and Constraint Solving 3

Constraint Propagation

Propagation is a successive reduction of variables domains by

successive application of narrowing functions

2020

An important concept is the notion of a fixed point

Fixed-Points. Let P=(X,D,C) be a CCSP. Let NF be a narrowing function associated with

a constraint of C. Let A be an element of DomainNF. A is a fixed-point of NF iff:

NF(A) = A.

The set of all fixed-points of NF within A, denoted Fixed-PointsNF(A), is the set:

Fixed-PointsNF(A) = { Ai  DomainNF | Ai  A  NF(Ai) = Ai } ❑

The union of all fixed-points of a monotonic narrowing function

within A is a fixed-point which is the greatest fixed-point within A

Union of Fixed-Points. Let P=(X,D,C) be a CCSP. Let NF be a monotonic narrowing

function associated with a constraint of C, and A an element of its domain. The union of

all fixed-points of NF within A is the greatest fixed-point of NF in A:

Fixed-PointsNF(A)Fixed-PointsNF(A)

Ai Fixed-PointsNF(A) Ai  Fixed-PointsNF(A) ❑

Lecture 5: Constraint Propagation and Constraint Solving 4

Constraint Propagation

The contraction resulting from applying a monotonic narrowing

function to A is limited by the greatest fixed-point within A:

No value combination included in the greatest fixed-point may be

discarded in the contraction

If the monotonic narrowing function is idempotent, the result of the

contraction is precisely the greatest fixed-point within A

Contraction Applying a Narrowing Function. Let P=(X,D,C) be a CCSP. Let NF be a

monotonic narrowing function associated with a constraint of C and A an element of its

domain. The greatest fixed-point of NF within A is included in the element obtained by

applying NF to A:

Fixed-PointsNF(A)  NF(A)

In particular, if NF is also idempotent then:

Fixed-PointsNF(A) = NF(A) ❑

2020

Lecture 5: Constraint Propagation and Constraint Solving 5

Constraint Propagation

The propagation algorithm applies successively each narrowing

function until a fixed-point is attained:

The algorithm is an adaptation of the original propagation

algorithm AC3 used for solving CSPs with finite domains

function prune(a set Q of narrowing functions, an element A of the domains lattice)

 (1) S   ;

 (2) while Q   do

 (3) choose NF  Q;

 (4) A’  NF(A) ;

 (5) if A’ =  then return  ;

 (6) P  { NF’  S: xRelevantNF’
 A[x]  A’[x] } ;

 (7) Q  Q  P ; S  S \ P ;

 (8) if A’ = A then Q  Q \ {NF} ; S  S  {NF} end if;

 (9) A  A’ ;

 (10) end while

 (11) return A ;

end function

2020

Lecture 5: Constraint Propagation and Constraint Solving 6

Constraint Propagation

From the properties of the narrowing functions it is possible to

prove that the propagation algorithm terminates and is correct

If all the narrowing functions are monotonic then it is confluent

(the result is independent from the selection criteria) and computes

the greatest common fixed-point included in the initial domains

Properties of the Propagation Algorithm. Let P=(X,D,C) be a CCSP. Let set S0 be a set

of narrowing functions (obtained from the set of constraints C). Let A0 be an element of

DomainNF (where NFS0) and d an element of D (dD). The propagation algorithm

prune(S0, A0) terminates and is correct:

d  A0
 d is a solution of the CCSP  d  prune(S0, A0)

If S0 is a set of monotonic narrowing functions then the propagation algorithm is

confluent and computes the greatest common fixed-point included in A0. ❑

The selection criterion is irrelevant for the pruning obtained but it

may be very important for the efficiency of the propagation

2020

Lecture 5: Constraint Propagation and Constraint Solving 7

Local Consistency

The fixed-points of the narrowing functions associated with a

constraint characterize a local property enforced on its variables

Such property is called local consistency:
depends only on the narrowing functions associated with one constraint (local)

defines the value combinations that are not pruned by them (consistent)

Local consistency is a partial consistency:
imposing it on a constraint is not sufficient to remove all inconsistent value

combinations among its variables

2020

Lecture 5: Constraint Propagation and Constraint Solving 8

Local Consistency

A constraint is said to be arc-consistent wrt a set of value

combinations iff, within this set, for each value of each variable

there is a value combination that satisfy the constraint:

Arc-Consistency and Interval-Consistency

Local consistencies used continuous domains are approximations

of arc-consistency developed for finite domains

Arc-Consistency. Let P=(X,D,C) be a CSP. Let c=(s,) be a constraint of the CSP. Let A

be an element of the power set of D (A2
D
). The constraint c is arc-consistent wrt A iff:

xis diA[xi] dA[s] (d[xi]=di  d )

which, is equivalent to:

 xis A[xi] = { d[xi] | d   A[s] } = xi


(A[s]) ❑

2020

Lecture 5: Constraint Propagation and Constraint Solving 9

Local Consistency

Example

B is not arc-consistent (ex: if x1=0.25 there is no value for x2 to satisfy c)

x2

x1

x1 = 0 x1 = x2

0 0.5 1.5

0.5

1.5

x
1



(B) = {0}[0.5,1.0]

x
2



(B) = [0.5..1.0]

c  x1(x2-x1) = 0

P = (X,D,C) = (<x1,x2>,D1D2,{c})

D1=[-1..3] D2 =[-0.5..2]

B =<[-0.5..2.5],[0.5..1.5]>

 = { <x1,x2>D | x1(x2-x1) = 0 }

c = (<x1,x2>,)

B

B=<[-0.5..1.5],[0.5..1.5]>

A=<[0..0],[0.5..1.5]><[0.5..1.5],[0.5..1.5]>

A is arc-consistent (x1

(A)=A[x1] and x2

(A)=A[x2])

2020

Lecture 5: Constraint Propagation and Constraint Solving 10

Local Consistency

A constraint is interval-consistent wrt a set of value combinations

iff for each canonical F-interval representing a variable sub-

domain there is a value combination satisfying the constraint

Arc-Consistency and Interval-Consistency

In continuous domains, arc-consistency cannot be obtained in

general due to machine limitations for representing real numbers

The best approximation of arc-consistency wrt a set of real valued

combinations is the set approximation of each variable domain

Interval-Consistency. Let P=(X,D,C) be a CCSP. Let c=(s,) be a constraint of the

CCSP (cC). Let A be an element of the power set of D (A2
D
). The constraint c is

interval-consistent wrt A iff:

xis [a..a+]A[xi] dA[s] (d[xi](a..a+)  d) 

[a]A[xi] dA[s] (d[xi](a-..a+)  d) (where a is an F-number)

which is equivalent to:

 xis A[xi] = Sapx({ d[xi] | d    A[s] }) = Sapx(xi


(A[s])) ❑

2020

Lecture 5: Constraint Propagation and Constraint Solving 11

Local Consistency

Example

B is not interval-consistent (if x1[0.250,0.251] there is no x2 satisfying c)

x2

x1

x1 = 0 x1 = x2

0 0.5 1.5

0.5

1.5

x
1



(B) = {0}[0.5,1.0]

x
2



(B) = [0.5..1.0]

c  x1(x2-x1) = 0

P = (X,D,C) = (<x1,x2>,D1D2,{c})

D1=[-1..3] D2 =[-0.5..2]

B =<[-0.5..2.5],[0.5..1.5]>

 = { <x1,x2>D | x1(x2-x1) = 0 }

c = (<x1,x2>,)

B

B=<[-0.5..1.5],[0.5..1.5]>

A=<[0..0],[0.5..1.5]><[0.5..1.5],[0.5..1.5]>

A is interval-consistent (Sapx(x1

(A))=A[x1] and Sapx(x2

(A))=A[x2])

2020

Lecture 5: Constraint Propagation and Constraint Solving 12

Local Consistency

In practice, the enforcement of interval-consistency can be applied

only to small problems:
the number of non-contiguous F-intervals may grow exponentially, requiring

an unreasonably number of computations for each narrowing function.

Arc-Consistency and Interval-Consistency

Interval-consistency can only be enforced on primitive constraints

where the set approximation of the projection function can be

obtained using extended interval arithmetic

Structures (not F-intervals) must be considered for representing

each variable domain as a non-compact set of real values

The approximations of arc-consistency most widely used in

continuous domains assume the convexity of the variable domains,

in order to represent them by single F-intervals

2020

Lecture 5: Constraint Propagation and Constraint Solving 13

Local Consistency

Hull-Consistency

Hull-consistency (or 2B-consistency) requires the satisfaction of

the arc-consistency property only at the bounds of the F-intervals

that represent the variable domains

A constraint is said to be hull-consistent wrt an F-box iff, for each

bound of the F-interval representing the domain of a variable there

is a value combination satisfying the constraint:

Hull-Consistency. Let P=(X,D,C) be a CCSP. Let c=(s,) be a constraint of the CCSP

(cC). Let B be an F-box which is an element of the power set of D (B2
D
). The

constraint c is hull-consistent wrt B iff:

xis dlB[s] (dl[xi][a..a+)  dl) 

drB[s] (dr[xi](b-..b]  dr) (where B[xi]=[a..b])

which is equivalent to:

xis B[xi] = Ihull({ d[xi] | d    B[s] }) = Ihull(xi


(B[s])) ❑

2020

Lecture 5: Constraint Propagation and Constraint Solving 14

Local Consistency

Example

B is not hull-consistent (if x1[-0.5,-0.499] there is no x2 satisfying c)

x2

x1

x1 = 0 x1 = x2

0 0.5 1.5

0.5

1.5

x
1



(B) = {0}[0.5,1.0]

x
2



(B) = [0.5..1.0]

c  x1(x2-x1) = 0

P = (X,D,C) = (<x1,x2>,D1D2,{c})

D1=[-1..3] D2 =[-0.5..2]

B =<[-0.5..2.5],[0.5..1.5]>

 = { <x1,x2>D | x1(x2-x1) = 0 }

c = (<x1,x2>,)

B

B=<[-0.5..1.5],[0.5..1.5]>

A=<[0.0..1.5],[0.5..1.5]>

A is hull-consistent (Ihull(x1

(A))=A[x1] and Ihull(x2

(A))=A[x2])

2020

Lecture 5: Constraint Propagation and Constraint Solving 15

Local Consistency

Hull-Consistency

HC3-Revise and HC4-Revise enforce Hull-consistency on a

constraint by explicitly (HC3-Revise) or implicitly (HC4-Revise)

decomposing it into primitive constraints

The major drawback of any decomposition approach is the

worsening of the dependency problem:
• the satisfaction of a local property on each primitive constraint does not imply

the existence of value combinations satisfying simultaneously all of them

HC3-Revise and HC4-Revise are particularly ineffective if the

original constraint contain multiple occurrences of variables

2020

Lecture 5: Constraint Propagation and Constraint Solving 16

Local Consistency

Box-Consistency

The drawbacks of the decomposition approach motivated the

constraint Newton method, which can be applied directly to

complex constraints

A constraint is said to be box-consistent wrt an F-box iff, for each

bound of the F-interval representing the domain of a variable there

is a box (bound+other F-intervals) that satisfies the interval

projection condition:

Box-Consistency. Let P=(X,D,C) be a CCSP. Let c=(s,) be a constraint of the CCSP

(cC) expressed in the form ec⋄0 (with ⋄{,=,} and ec a real expression). Let FE be

an interval expression representing an interval extension F of the real function

represented by ec. Let B be an F-box which is an element of the power set of D (B2
D
). c

is box-consistent wrt B and FE iff:

xis r1FE(B1) r1⋄0  r2FE(B2) r2⋄0

where B1 and B2 are two F-boxes such as:

B1[xi]=cleft(B[xi]), B2[xi]=cright(B[xi]) and xjs (xjxiB1[xj]=B2[xj]=B[xi]). ❑

2020

Lecture 5: Constraint Propagation and Constraint Solving 17

Local Consistency

Example

B is not box-consistent (0[-0.5,-0.499]([0.5,1.5]-[-0.5,-0.499])=[-1,-0.498])

x2

x1

x1 = 0 x1 = x2

0 0.5 1.5

0.5

1.5

x
1



(B) = {0}[0.5,1.0]

x
2



(B) = [0.5..1.0]

c  x1(x2-x1) = 0

P = (X,D,C) = (<x1,x2>,D1D2,{c})

D1=[-1..3] D2 =[-0.5..2]

B =<[-0.5..2.5],[0.5..1.5]>

 = { <x1,x2>D | x1(x2-x1) = 0 }

c = (<x1,x2>,)

B

B=<[-0.5..1.5],[0.5..1.5]>

A=<[0.0..1.5],[0.5..1.5]>

A is box-consistent:
0[0..0.001]([0.5..1.5]-[0..0.001]) and 0[1.499..1.5]([0.5..1.5]-[1.499..1.5])

0[0..1.5]([0.5..0.501]-[0..1.5]) and 0[0..1.5]([1.499..1.5]-[0..1.5])
2020

Lecture 5: Constraint Propagation and Constraint Solving 18

Local Consistency

Box-Consistency

Although box-consistency is weaker than hull-consistency for the

same constraint, the enforcement of box-consistency may achieve

better pruning since it may be directly applied to complex constraints

with BC3-Revise

For primitive constraints box-consistency and hull-consistency are

equivalent (with infinite precision)

For complex constraints box-consistency is stronger than hull-

consistency applied on the primitive constraints obtained by

decomposition

2020

Lecture 5: Constraint Propagation and Constraint Solving 19

Consistency Enforcement

Generalising the concept of local consistency from a constraint to

the set of constraints:
a CCSP is locally consistent (interval, hull or box-consistent) wrt a set A of

real valued combinations iff all its constraints are locally consistent wrt A

Since the propagation algorithm obtains the greatest common

fixed-point (of the monotonic narrowing functions) included in the

original domains, then applying it to a set A results in the largest

subset A’A for which each constraint is locally consistent.

Local-Consistency. Let P=(X,D,C) be a CCSP. Let A be an element of the power set of

D (A2
D
). P is locally-consistent wrt A iff:

cC c is locally-consistent wrt A

Let S be a set of monotonic narrowing functions associated with the constraints in C

which enforce a particular local consistency by constraint propagation:

P is locally-consistent wrt prune(S,A)

A’A (P is locally-consistent wrt A’  A’ prune(S,A)) ❑

Local Consistency and Higher Order Consistencies

2020

Lecture 5: Constraint Propagation and Constraint Solving 20

Consistency Enforcement

When only local consistency techniques are applied to non-trivial

problems the achieved reduction of the search space is often poor

Local Consistency and Higher Order Consistencies

Initial box

Smallest box enclosing all

solutions within the initial box

Box obtained by enforcing a local

consistency on the initial box

x1

x2

-5
-5

5

5

c1x1
2+x2

2−220 c2(x1−1)2+(x2−1)2−2.520.

2020

Lecture 5: Constraint Propagation and Constraint Solving 21

Higher Order Consistencies

Better pruning of the variable domains may be achieved if,

complementary to a local property, some (global) properties are

also enforced on the overall constraint set

Higher order consistency types used in continuous domains are

approximations of strong k-consistency (with k>2) restricted to the

bounds of the variable domains:

A CSP is k-consistent (k2) iff any consistent instantiation of k-1

variables can be extended by instantiating any of the remaining variables.

A CSP is strongly k-consistent if it is i-consistent for all ik.

Strong 2-consistency corresponds to arc-consistency and

hull-consistency is an approximation of strong 2-consistency

restricted to the bounds of the variable domains

2020

Lecture 5: Constraint Propagation and Constraint Solving 22

3B-consistency and Bound-consistency, are generalisations of hull

and box-consistency respectively:
if the domain of one variable is reduced to one of its bounds then the obtained

F-box must contain a sub-box for which the CCSP is locally consistent.

The following is a generic definition for the consistency types used

in continuous domains (local consistency is just a special case with k=2):

kB-Consistency. Let P=(X,D,C) be a CCSP. Let A be an element of the power set of D

(A2
D
) and k an integer number.

P is 2B-Consistent wrt A iff P is locally-consistent wrt A

k>2 P is kB-Consistent wrt A iff

xiX (A1B1
 P is (k-1)B-Consistent wrt A1  A2B2

 P is (k-1)B-Consistent wrt A2)

where B1 and B2 are two elements of the power set of D such that:

B1[xi]=cleft(B[xi]), B2[xi]=cright(B[xi]) and xjX (xjxiB1[xj]=B2[xj]=B[xi]). ❑

2020

Higher Order Consistencies

Lecture 5: Constraint Propagation and Constraint Solving 23

The algorithms to enforce higher order consistencies interleave

constraint propagation with search techniques

The growth in computational cost of the enforcing algorithms may

limit the practical applicability of such criteria

2020

Shaving and Probing implement strong consistencies

• one variable is instantiated

• slices are contracted with respect to the complete CCSP

Higher Order Consistencies

Lecture 5: Constraint Propagation and Constraint Solving 24

Iteratively discard slices on the boundaries of an interval domain

using local consistency based operators on all the constraints

Shaving

2020

Shaving contracts one facet at a time

A value is temporarily assigned to a variable and a partial

consistency is enforced to the CCSP. If an inconsistency is

obtained then the value can be safely removed from the domain of

the variable. Otherwise, the value is kept in the domain.

Higher Order Consistencies

Lecture 5: Constraint Propagation and Constraint Solving 25

Iteratively discard slices on the boundaries of an interval domain

using local consistency based operators on all the constraints

2020

Shaving contracts one facet at a time

A value is temporarily assigned to a variable and a partial

consistency is enforced to the CCSP. If an inconsistency is

obtained then the value can be safely removed from the domain of

the variable. Otherwise, the value is kept in the domain.

Shaving

Higher Order Consistencies

Lecture 5: Constraint Propagation and Constraint Solving 262020

The result is the union hull of contracted sub-boxes

Split the domain of one variable in several parts and contract every

sub-box using local consistency operators on all the constraints

Probing

Higher Order Consistencies

Lecture 5: Constraint Propagation and Constraint Solving 272020

The result is the union hull of contracted sub-boxes

Split the domain of one variable in several parts and contract every

sub-box using local consistency operators on all the constraints

Probing

Higher Order Consistencies

Lecture 5: Constraint Propagation and Constraint Solving 28

With probing all the variable domains are potentially contracted

2020

The result is the union hull of contracted sub-boxes

Split the domain of one variable in several parts and contract every

sub-box using local consistency operators on all the constraints

Probing

Higher Order Consistencies

Lecture 5: Constraint Propagation and Constraint Solving 292020

The result is the union hull of contracted sub-boxes

Split the domain of one variable in several parts and contract every

sub-box using local consistency operators on all the constraints

CID (Constructive Interval Disjunction): Is a contractor based on

this technique. CID(HC4) propagates HC4-revise onto each sub-box

3BCID: Is a hybrid algorithm mixing constructive interval

disjunction and shaving. 3BCID(HC4), 3BCID(Mohc)

ACID: Is an adaptive variant of 3BCID which computes

dynamically during search the value of its parameters.

ACID(HC4), ACID(Mohc)

Probing

Higher Order Consistencies

Lecture 5: Constraint Propagation and Constraint Solving 30

Consistency Enforcement

Local Consistency and Higher Order Consistencies

All the consistency criteria used in continuous domains, either

local or higher order consistencies, are partial consistencies

The adequacy of a partial consistency for a particular CCSP must

be evaluated taking into account the trade-off between the pruning

it achieves and its execution time

It is necessary to be aware that the filtering process is performed

within a larger procedure for solving the CCSP and it may be

globally advantageous to obtain faster, if less accurate, results

2020

Lecture 5: Constraint Propagation and Constraint Solving 31

Constraint Solving

2020

Variable selection: round-robin, largest-first, smear-based

Bisection

Branching Strategies

Optimization

Branch-and-Bound Algorithm

Enclosure of the Feasible Space

Branch-and-Prune Algorithm

Variable Elimination

Dependency Reduction

Modelling Techniques

System Scaling

Lecture 5: Constraint Propagation and Constraint Solving 32

Branch-and-Prune

When the objective is to find all the solutions, interval branch-and-

prune algorithms alternate contraction and branching steps until

reaching small enough boxes containing the feasible space:

• at each iteration, a box of the paving to process is selected and

contracted according to the constraints

2020

• if it becomes empty, it is discarded

• else, if it has reached the prescribed precision, it is added to the

set of boundary boxes (and not further processed)

• otherwise it is split into sub-boxes to be further processed

• it starts with D, the box of the initial domains to process

• if is proved that it contains only solutions, it is added to the set

of inner boxes (and not further processed)

Solving Continuous Constraint Satisfaction Problems

Lecture 5: Constraint Propagation and Constraint Solving 33

Branch-and-Prune

2020

Box bisection is the usual split strategy:

• generate two sub-boxes equal to the original box except in the xi

domain: one with the left part (from lower bound to midpoint);

the other with the right part (from midpoint to upper bound)

• choose one variable xi from the box with its interval domain

larger than the prescribed precision

Branching Strategies

The most commonly used variable selection strategies are:

• round-robin

• largest-first

• smear-based strategies

Lecture 5: Constraint Propagation and Constraint Solving 34

Branch-and-Prune

2020

Branching Strategies

Round-robin variable selection strategy:

• the goal is to refrain from neglecting any variable

• is a fair strategy where each variable is regularly chosen

• a bad initial ordering of variables can lead to bed performance

Largest-first variable selection strategy:

• intervals with large domains penalize the contracting methods

• selects the variable with the largest domain

• is also a fair strategy

Lecture 5: Constraint Propagation and Constraint Solving 35

Branch-and-Prune

2020

Branching Strategies

Smear-based variable selection strategies:

• estimate the impact of the variables on each constraint using the

partial derivatives and the sizes of the variable domains
• aggregate these values to estimate the impact of each variable

on the whole system
• select the variable with the greatest impact

The impact of xi on a function gj is computed by the smear value:

𝑠𝑚𝑒𝑎𝑟 𝑥𝑖 , 𝑔𝑗 = 𝑤𝑖𝑑𝑡ℎ([𝑥𝑖]) × 𝑚𝑎𝑔(
𝛿𝑔𝑗

𝛿𝑥𝑖
[𝑥]) 𝑚𝑎𝑔 𝑎, 𝑏 = max(𝑎 , 𝑏)with

the smear value estimates the reduction of the image size of gj

consequent upon a reduction of the domain size of xi

Lecture 5: Constraint Propagation and Constraint Solving 36

Branch-and-Bound

When the objective is to solve a continuous constraint optimization

problem, interval branch-and-bound algorithms are used, that

alternate branching, bounding and contraction steps

• upper bounding consists in finding feasible solutions within a

box with costs lower than the best found solution

(local optimization techniques are used for upper bounding)

2020

• lower bounds may be computed with interval methods or linear

methods applied to safe relaxations (used for selecting the next

box to process and in stopping criteria)

• additional constraints on the bounds of the objective function

and first-order optimality conditions

• branching is similar to the branch-and-prune algorithms

• contraction is similar to the branch-and-prune algorithms

Optimization

Lecture 5: Constraint Propagation and Constraint Solving 37

Modelling Techniques

Frequently a single problem may be modelled by several

equivalent CCSPs

The behaviour of a constraint solver may change drastically even

with equivalent CCSPs

To choose the best model for a particular problem is important to

understand the underlying constraint propagation algorithms

Some modelling techniques are commonly adopted for improving

the accuracy and efficiency of the continuous constraint solvers

2020

Lecture 5: Constraint Propagation and Constraint Solving 38

Modelling Techniques

A fundamental problem of interval arithmetic is the dependency

problem (see lecture 2).

Dependency Reduction

Dependency Problem. In the interval arithmetic evaluation of an interval expression,

each occurrence of the same variable is treated as a different variable. The dependency

between the different occurrences of a variable in an expression is lost. ❑

Some expressions may be rewritten into equivalents that minimize

the dependency problem

Factorize as much as possible polynomial expressions:

Instead of using constraint x2y2+xy2+xy=0 use constraint xy(y(x+1)+1)=0

Use better interval extensions (mean value form, Taylor form,…):

Instead of using constraint x−x2=0 use constraint 0.25−(x−0.5)2=0

Examples:

2020

Lecture 5: Constraint Propagation and Constraint Solving 39

Modelling Techniques

Precision and efficiency may be improved if the number of

variables is reduced

Variable Elimination

Sometimes a set of constraints may be rewritten into an equivalent

set with less variables

Example:

Continuous constraint solvers rely on the efficiency of branch and

prune algorithms for enforcing consistency on the CCSP variables

Instead of using the constraint system:

x1 + x2 + x3 = −1

(x1 + x1x2 + x2x3) x4= c1

(x2 + x1x3) x4= c2

x3x4 = c3

Consider x4 = c3/x3 and use the constraint system:

x1 + x2 + x3 = −1

(x1 + x1x2 + x2x3)c3 = c1x3

(x2 + x1x3)c3 = c2x3
2020

Lecture 5: Constraint Propagation and Constraint Solving 40

Modelling Techniques

A consequence of numerical errors is the amplification of the

variable domains and poor pruning results

System Scaling

Two major sources of numerical errors are:
operations with large numbers (lower density of F-Numbers at this ranges)

operands with different magnitudes

Scaling the system and making some variable substitutions may

avoid such situations as much as possible

Continuous constraint solvers rely on interval techniques for

dealing with numerical errors.

Consider x = 1020y and use the constraint: y2+3y+2=0

Example:

Instead of using constraint: 10-20x2+3x+2×1020=0

2020

