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Newton Method for Finding Roots of Univariate Functions
Let f be a real function, continuous 1 [a,b] and differentiable 1n (a..b)

Accordingly to the mean value theorem:

vr,,rze[a,b] er [min(r,,r,),max(r;,r,)] f(r]):f(r2)+(r] o I"2)Xf’(§)

If r, 1s a root of f then f(r,)=0 and so:

vrj,rze[a,b] Elfe [min(rj,r2),max(r1,r2)}ﬂr1):(r1 o rZ)Xf’(é:)

And solving it in order to 7,:

vrl,rze[a,b] er [min(r,,r,),max(r;,r;)] Fy= I"]—f(l"])/j[,(é:)

Therefore, 1f there 1s a root of f1n [a,b] then, from any point »; in [a,D]
the root could be computed i1f we knew the value of &
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Newton Method for Finding Roots of Univariate Functions

The idea of the classical Newton method is to start with an initial
value r, and compute a sequence of points r; that converge to a root

To obtam r,, ; from r,; the value of & is approximated by r;:
P = e frdlf (&) = rif(r)lf (1)
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Newton Method for Finding Roots of Univariate Functions

Near roots the classical Newton method has quadratic convergence

However, the classical Newton method may not converge to a root!
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Interval Extension of the Newton Method
The idea of the Interval Newton method is to start with an initial
interval /, and compute an enclosure of all the » that may be roots

vrl,re [a,b] 3 ce[min(r;,r),max(r;,r)] r= r]_f(rl)/f"(é:)

If » 1s a root within /7, then: ce I,
Ve, 7€ r=frlf () (all the possible values of & are considered)

In particular, with »,=c=center(l,) we get the Newton interval function:
r € c—f(e)lf '(Lp) = Ny)

Since root » must be within the original interval /,, a smaller safe

enclosure /; may be computed by:

I; =1, N(,)
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Interval Extension of the Newton Method

The 1dea of the Interval Newton method is to start with an initial
interval /, and compute an enclosure of all the » that may be roots
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Interval Extension of the Newton Method

Newton Function, Newton Step and Newton Narrowing

Newton Function. Let /' be a real function, continuous and differentiable in the closed
real interval 7, and f its derivative. Let F' and F’ be interval extensions of f and f~,
respectively. Let ¢ be the mid value of the interval I (c=center(l)). The interval Newton

_F(c) 0
F'(1)

function N with respect to fis: N(I) =|c]

Newton Step. Let / be a real function, continuous and differentiable in the closed real
interval 1. Let N be the Newton function with respect to /. The Newton step function NS

with respect to fis:
NS()=1n N(I) O

Newton Narrowing. Let f be a real function, continuous and differentiable in the closed
real interval /. Let NS be the Newton step function with respect to f. The Newton
narrowing function NN with respect to fis:

% if  NS()=0
NN(D)={ I if  NS()=I
NNNS())  if NSl a
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Interval Extension of the Newton Method

Example of the Interval Newton Method

i li [c] Fe(lci]) Fe(ly) N(I;)

0 [0.500.2.000] {1.250} [-0.313.-0.312] [-3.000.0.000] [-0..1.146]

1 [0.500.1.146] {0.823} [0.145.0.146]  [-1.292..0.000]  [0.936..+c0]
2.07 2 [0.936.1.146] {1.041} [-0.042.-0.042] [-1.292..-0.872] [0.991..1.009]

3 [0.991.1.009] {1.000} [0.000..0.000]  [-1.018..-0.982] [1.000..1.000]

4 [1.000.1.000] {1.000} [0.000..0.000]  [-1.000..-1.000] [1.000..1.000]

2.07 | S~ 2 2 [c] = [center(I;)]
- | \\\ fe=x1—X; Fe=X;— X, | i
30 : f(x ~ ,
30_ i (X1) Fe=1-26 Froe1 - 2%,
-4.0 | | |
0.5 1.0 15 2.0
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Interval Extension of the Newton Method

Extended Interval Arithmetic for the interval Newton Method

Using extended interval arithmetic, the result of the Newton
function 1s not guaranteed to be a single interval:

division by an interval containing zero may yield the union of two intervals

The solution could be to use the union hull of the obtained intervals

A much better approach 1s to intersect separately each obtained
interval with the original interval and then:

If the result of the intersection is a single interval, the Newton narrowing

can normally continue.
Otherwise, the union hull of the obtained intervals should be considered
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Analysis of the Newton Steps

Before a more detailed analysis of the Newton method we remind the division of

two finite intervals ,  and J where | =[a, b] and J =[c,d]

Case 1. 0O I & 0 €& J i.e. (a>0 | b<0) & (c>0 | d<0)
I/J : one finite interval not containing 0
I / J= [min(a/d , b/c) , max(b/d , a/c)]

Case 2. 0 & I & 0 €EJ i.e. (a>0 | b<0) & (¢ < 0 < d)
I/J : two semi-infinite intervals not including 0
I/J = [-©, min(a/c , b/d)] U [max(a/d , b/c) , +x]

Case 3. 0 € I & 0 €& J i.e. (a < 0 < b)) & (c>0 | d<0)
I/J: one finite interval containing 0
I/J = [min(a/c , b/d) , max(b/c , a/d)]

Case 4. 0 € I & 0 e J i.e. (a < 0<b) & (<0< d)
I/J: one infinite interval (degenerate)
I/J = [—CO’ +00]
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Analysis of the Newton Steps

Newton Step: I_,, = I_ N N(I,)
where N(I ) = m, - X_ isthe (centered) Newton Function
ie. m = mid(I)) and X = F(m,) / F’ (I,)

AlsoletF(m,) = [a,,b,] andF’' (I)) = [c,,d,]

Case 1. 0 & F(m,) & 0 & F’ (I,):
X, = [min(a,/d,,b,/c,) , max(b,/d,,a,/c,) ]
X, is one finite interval not containing 0
N(I,) = m, — X, isone finite interval not containing m,
I, =I NN(I) C1I_
m, € I_ and m, & N(I,)
Moreover, since m, is the mid-point of I
width(I_,,) < 0.5 width(I )

The Newton step yields one interval with, at most, half the width of |..
If I, contains a zero of the function then, | ., also does contain this zero.

Hence, if I,,4 is empty, there were no zeros of F (nor f) in |, (no zeros are lost).
However, in this case and due to evaluation errors, .., might be not empty.
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Analysis of the Newton Steps
Newton Step: I_,, = I N N(I))

n+l

where N(I_ ) = m, - X_ is the (centered) Newton Function
ie. m = mid(I)) and X = F(m) / F’ (I,)
AlsoletF(m ) = [a,,b,] and F’' (I)) = [ec,,d,]

Case 2. 0 & F(m)) & 0 € F’/ (I,):
X =I' UI2 = [-%o,min(a,/c, ,b /d )] U [max(a_ /d ,b /c ) 6 +=]
X_ Is composed of two semi-infinite intervals not including 0
N(I,)=m-I' Um-I2 aretwo semi-infinite intervals not containing m_
I, = (I, Nm-I' ) U (I, Nm -I2)) CI_
Now, I_,, may be empty or

two finite intervals not containing m_; or
one finite interval not containing m_; or

The Newton step yields two intervals, each at most with half the width of I...
If an interval is typically empty, it does not contain a zero of the function.
Again, a non empty interval may contain no zeros of the function.

2019 Lecture 3: Interval Newton Method 13



Analysis of the Newton Steps

Newton Step: I_,, = I_ N N(I,)

n+l

where N(I)) = m, - X,  isthe (centered) Newton Function
lLe. m,Z = mid(I ) and X = F(m,) / F’ (I,)
AlsoletF(m,) = [a,,b,] and F’ (I)) = [c,,d,]

Case 3. 0 € F(m)) & O & F’ (I,)):
X = [min(a,/c, , b, /d)), max(b_ /c_,a /d )]

X_ is one finite interval containing 0

n
N (I )= m_-X_ is one finite interval containing m,
In+1 = In N N(:I:n) g In

Now, I_,, may or may not be strictly included in I

Since F (m_) includes zero, we are already close to a zero of the function. In
fact, without rounding errors, the zero would have been found!

F(m)=0= £(m) =0.
The Newton step yields one interval, possibly strictly included in |,.
If not strictly smaller, should it be split, and Newton steps applied to the splits?

2019 Lecture 3: Interval Newton Method
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Analysis of the Newton Steps

Newton Step: I ., = I, N N(I,)
where N(I ) = m, - X  is the (centered) Newton Function
ie. m = mid(I)) and X = F(m ) / F’ (I,)

AlsoletF(m,) = [a,,b,] andF’ (I)) = [c,,d,]

Case 4. 0 € F(m)) & 0 € F' (I)):

X = [-0 , +00]

n

X_ is one infinite interval

n

N(I, )= m -X_  isone infinite interval

I,, =1I NN(I) =1I

n

The Newton step reaches a fixed point, i.e. | ,, does not narrow ..
Again, without rounding errors, the zero would have been found!
Again, since I_,, = I_, should it be split, and Newton steps applied to the splits?
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2019

Stopping Criteria

In general, when an interval is not narrowed by the Newton Step (due to
evaluation errors, or in cases 3 and 4) we may consider splitting and

applying the Newton Step to each of the resulting subintervals.

The following criteria specify situations when we may chose not to split
the intervals any further.

Situation 1. We are already close to a solution. Lete, and €. be arbitrarily
small reals.
Criterion A: width (I,) <e,
Do not apply the Newton Step to an interval I if width (I_)<e, since
we already obtained a good approximation of the zero.
Criterion B: |F(I,)) | <e,

Do not apply the Newton Step to an interval I_if | (F(I,) | <g, since in

the considered interval the value of the function is already “sufficiently”
close to zero.

Lecture 3: Interval Newton Method
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2019

Stopping Criteria
Situation 2. No further convergence due to rounding errors.

CriterionC:0 € F(m;) & 0 &€ F/(I)) and I _,, D I

n+l n

I .. 2 I, means thatthe Newton Step does not narrow a given interval.

But since 0 & F’ (I_,) then the function is monotonic (increasing or

decreasing) in the interval and it is very likely that a zero lies in this interval.

However, this is not guaranteed — the evaluation of F (m_ ) may produce a
large approximation error and contain a 0 even if m_ is not 0.

Given the rounding errors, there is little we can do to narrow I ... except
a) use a higher precision in the computations; or

b) Use a point k_ € 1_ different from its midpoint k_ # m_.

Lecture 3: Interval Newton Method
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2019

Stopping Criteria

Situation 3. Degenerate narrowing.
CriterionD: 0 € F(m;) & 0 € F/ (I,) & R > 1024 (!?)
This case may arise either because F(m_ ) is very wide (due to rounding

errors) or because we are already very close to a solution.

To discard the first case, we may check the effect of the rounding by
comparing the widths of the evaluation of F in a single point and in the
whole interval. Let us define the ratio

R’ = width(F(I,))/width(F(m,))
If R is sufficiently large, then this is an indication that the rounding errors are
not “significant” and we are already close to a solution. In fact, to avoid

computing F(I,), and since F’ (I,)needs to be computed, we may use a
good approximation

R = width(F’ (I)))/width(F(m ))

Lecture 3: Interval Newton Method
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Properties of the Interval Newton Method

Soundness
If a zero of a function 1s searched within an interval then 1t may be

searched within a possibly narrower interval obtained by the
Newton narrowing function with the guarantee that no zero is lost

Soundness of the Interval Newton Method with Roots. Let f be a real function,
continuous and differentiable in the closed real interval /. If there exists a zero ry of fin
then 7y 1s also in N(/), NS(I) and NN(I), where N, NS and NN are respectively the Newton
function, the Newton step function and the Newton narrowing function with respect to f:

Vi, el fKro)=0 = ro eN(I) A rg eNSUI) A ro eNN(I) O

[f the result of the Newton narrowing function 1s the empty set then
the original interval does not contain any zero of the real function

Soundness of the Interval Newton Method without Roots. Let f be a real function,
continuous and differentiable in the closed real interval 1. If NS(/)=< or NN(I)=< (where
NS and NN are respectively the Newton step function and the Newton narrowing function

with respect to f) then there is no zero of f'in I:
NS()=D v NN(D)=38 = —3p, e fro)=0

2019 Lecture 3: Interval Newton Method

Q

19



Properties of the Interval Newton Method
Proving the Existence of a Solution

Despite its soundness, the method is not complete: in case of non
existence of a root the result 1s not necessarily the empty set

Therefore obtaining a non empty set does not guarantee the
existence of a root

However, in some cases, the Newton method may guarantee the
existence of a root

Interval Newton Method to Prove the Existence of a Root. Let f be a real function,
continuous and differentiable in the closed real interval 1. Let N be the Newton function
wrt f. If the result of applying the Newton function to / is included in 7 then there exists a
zero of fin [

N() € 1=> 3yt fro)=0 =

2019 Lecture 3: Interval Newton Method 20



Properties of the Interval Newton Method

Convergence and Efficiency

The 1interval arithmetic evaluation of any Newton narrowing
function 1s guaranteed to stop

Convergence of the Interval Newton Method. Let f be a real function, continuous and
differentiable in the closed real interval /. The interval arithmetic evaluation of the
Newton narrowing function (NN) with respect to f will converge (to an F-interval or the
empty set) in a finite number of Newton steps (/NS). a

Convergence may be quadratic for small intervals around a simple
zero of the real function:

width(NS™*1(1,)) < kx(width(NS™(1,))?
Moreover, even for large intervals the rate of convergence may be

reasonably fast (geometric):
If 0¢F([c]) and 0¢ F"(/) then width(NS(1)) < 0.5xwidth(I)
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Enclosing the Zeros of a Family of Functions

The method can be naturally extended to deal as well with real
functions that include parametric constants represented by intervals

The mtended meaning 1s to represent the family of real functions
defined by any possible real instantiation for the mterval constants

The existence of a root means that there 1s a real valued
combination, among the variable and all the interval constants, that
zeros the function
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Enclosing the Zeros of a Family of Functions

Fe =X, x ([0.5..1.5] — X,)

F’E = [0515] - 2X1

i .
0.5 0.0 0.5 1.0 15 2.0 25
[-0.5..0.2]

lo
NN(Io)

[0..0.001]
If the mmitial interval 1s [-0.5,0.2] the unique zero is successfully

enclosed within a canonical F-interval [0..0.001]

(assuming that the canonical width is 0.001)
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Enclosing the Zeros of a Family of Functions

Fe =X, x ([0.5..1.5] — X,)

F’E = [0515] - 2X1

-0.5 0.0 0.5 1.0 15 2.0 25
[0.3..1.0]

NN(lo) [0.3..1.0]

If the mnitial interval 1s [0.3,1.0] it cannot be narrowed because both
F([0.65]) and F’z([0.3..1.0]) include zero

2019 Lecture 3: Interval Newton Method 24



Enclosing the Zeros of a Family of Functions

Fe =X, x ([0.5..1.5] — X,)

F’E = [0515] - 2X1

-0.5 0.0 05 1.0 15 2.0 2.5
[1.1..1.8]

NN(lo) [1.1..1.554]

If the initial interval is [1.1,1.8] the right bound 1s updated to 1.554
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Enclosing the Zeros of a Family of Functions
1'0: Fe = X; x ([0.5..1.5] = Xy)
0.0 7

_ F’e=[05..1.5] - 2%,
1.0
2.07
3.0 7
4.0 -
5.0
-0|.5 OI.O Oi.5 1I.O 1i.5 2!0 2|.5
| [1.9..2.6]
NN(lo) o

If the initial interval is [1.9,2.6] it can be proven that it does not
contain any Zeros
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Zeros of Systems of Equations

f,(X, Xy, ..., X )=0

where: Xq,..., X, are the unknowns
f,(x,X,,...,x )=0 S

f,..., f, are nonlinear functions
f (X, X,y..., % )=0

Systems of Linear Equations:
a, X, +a,X, +...+a,X, =hb

n--n

where: x,..., X, are the unknowns
Ay X, +8,X, +...+3, X =Dh,

ay1,-.., &, are constant coeficients

: b,,..., b, are constants
a X, +a,X,+...+a, X =b

Matrix form: AX=Db

unique solution dy dp ... dy X by

iff A—|%n 8p ... Oy y=| % b = b,

exists Al : co e : :
_anl an2 e ann _ _Xn _ _bn _
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Zeros of Systems of Linear Equations

Classical Solving Methods:

* Direct Methods:
— Ex: Gaussian Elimination
— In theory, allows to compute exact solutions with a
finite number of elementary arithmetic operations.

— In practice, due to rounding errors, only approximate solutions are
computed.

e [terative Methods:
— Ex: Gauss-Seidel Method
— The solution is the limit of a infinite series of vectors.
— In practice, only a finite number of vectors is computed.

— May not converge to a solution (converges Iif A is strictly diagonal
dominant).
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Zeros of Systems of Linear Equations
Gaussian Elimination

3 16
Example: + —
. —-X1 +XxX, = — _ _
51 2 5 ay, ap a; ; b
3 24 !
_?xl T X = 7 ay Ay Gy | b
"""""""""""""""" | 31 43 a3 E b3_
-] [a;,  ap  ayp by
— !
/ 1 ’ ' ;
~ 7 ay ay ! b
HH\ e 'ff E "
> L ay | b
/ o
/'//
[ X3 = b'y/a";
Xy = (b — ahx;)/a’y,
- - -1 o 1 xl — (bl — a13X3 == alzxz)/a“
2019 Lecture 3: Interval Newton Method
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Zeros of Systems of Linear Equations
Gaussian Elimination

16

Example: +§x Yoy, = —

71727 g [a11 ai b1]

3 N 24 dz; Gy by

771 2Ty
B e N ] a1 12 by
(pp — Qp1Q12/011 by —biazi/ag,
[ ‘ ]
. - . by — biaz;/a14 10
) - ] X = = ~3.33
[ N e : Azz — Az21Q12/A11 3

><

] by —a,x 2
| ../ - X =—22 = 2022
[ - - a11 9
7 |
1- IIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
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Zeros of Systems of Linear Equations

. 3 16 Gauss-Seidel
Example. _|_§x1 +x, = ?
3 N 24 Initial guess:
—oX1 T X2 = 0_ 3T 0 _3 0_ 3
7 X, = X, Xy = Xypooy X) = X
lteration:
T (k+1) _ — _ (k+1) _ (k)
7 X 0= 3 b Zaijxj Zaijxj
4 _ fﬂ - i J<I 1>l
TN - Stopping criteria:
_ - ] : 1
' ~ ' XiJ - XiJ 0
- | Eyi = ——Ix100% < tol
2 ] ’ XJ
L e I
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Zeros of Systems of Linear Equations

. 3 16 Gauss-Seidel
Example: 4+ cxtx == 0 O
3 . 24 Initial guess: X, =X, X; =X,
ToX1 T X2 = 1
7 / lteration: Xl(k+1) =— (bl —a, Xék))
e a,
1
k+1 k+1
Xé ) :—(bz a21Xl( +)>
a‘22
| ﬂ_____..f _- YO Z16/3 (5/3)x
| 7 | L ’
N | XD =2417+3/7)xP
= X2 =16/3—(5/3)x{"
| Xs =2417+(3/7)x?
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Zeros of Systems of Linear Equations

Gauss-Seidel

Example: +§x1 tx, = ?
3 24 Initial guess:
BrACRC x°=0,%% =3
IIIIIIIIIIIIIIIIIIIIIIIIIIIIIII lteration:
1 x® =16/3-(5/3)3=1/3~0.33
f,,,” XD =24/7+(3/7)(1/3)=25/7~3.57
,f”‘ | X® =16/3-(5/3)(25/7) =-13/ 21~ 0.62
,,.”"’f | x$2 =24/7+(3/7)(-13/21) =176/49 ~ 3.59
- 1 X =16/3—(5/3)(176/49) =—32/49 ~ —0.65
X =24/7+(3/7)(-32/49) =1080/343 ~ 3.15
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Zeros of Systems of Interval Linear Equations

Systems of Interval Linear Equations:
[a, 1% +[a,]1%, +...+[a, ]X, =[b,] where: x,,..., x, are the unknowns

[, Ix +[a,,]X, +...+[a,,]X, =[b,] [811]...., [an,] are interval coeficients
: [b,]...., [b,] are interval constants

[anl]xl + [anZ]XZ Tt [ann]xn — [bn]

Matrix form: [A]X=[b]

o] [ao] - [an]| - ]
[A]z [a:21] [a:zz] [a?n] ¥ = X2 [b]= [bz]
] [a,] . [a,]] L™ b,]

Solution set: {x|3aepa)IpepAx = b}
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Zeros of Systems of Interval Linear Equations
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Zeros of Systems of Interval Linear Equations

2 4 16

Example: 2= _ 2
4 2 . 24
[ 7) 7]x1 x2 - 7
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Zeros of Systems of Interval Linear Equations

Example: [ ]xl tx, = [1?5,%] Gaussian Elimination
[b2] = [b1][az1]/[a14]
- 22 2 € agal — [z a2 /lar]
_§1_; X1+ Xy = [7»7] 22 2111%12 11
_ . € [b1] — [a12]x;
' [ai4]
2.2 -2, -2, - 21t
[1] - [~5,—2)[11/[£ 2]
o1 118 ~[1.79,6.21
[3 1’19 | too large
enclosure
[15 17
X2 305 273
24 = [_Q'ﬁ ~[—8.03,4.01]
53]
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Zeros of Systems of Interval Linear Equations

. 15 17 Gauss-Seidel
Example: x1 +x, = [—,
5°5
iy Initial box: [—2.5,2.5] X [1.5,4.5]
7
= [~2.5,2.5] x0 = [1.5,4.5]
15 17
§k+1) (k) N ]( e xgk)>

§k+1) _ xzk) n (

73] l 1)

= [-2.5,2.5] x5 = [1.5,4.5]

no contraction!
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Zeros of Systems of Interval Linear Equations

Interval Gauss-Seidel

* Preconditioning:

— Transform the interval linear system into an equivalent
system:

e same solution space
 easier to enclose by the Gauss-Seidel method

— Multiply both sides of the the interval linear system by a real
matrix P (preconditioner):

P[A]x = P[b]

— Usually, P is the inverse of the real matrix formed by the
midpoints of A:

P = (c(D)™?

2019 Lecture 3: Interval Newton Method 39



Zeros of Systems of Interval Linear Equations

Original system:

[ ] [15 17
X1 +x2

2 3 2 5
-, = x1 + Xy =
7" 7

Y L L L L B

1 :
I N 1
ar _,-""' .

[ \ "_.__.-""' ]

I “""-\._\l‘ \\ ._.__.-"'"' ’_‘__‘-"-’d ]

L \\ j{,x” / o
4r S H‘Mk ff,*" / _F_____-#"'---- T
3'_ _,ff ”f,'i"’-'if.:m\- xa

I — O

I / e ™ .

I -~ =

| d"-'-'-'(‘ ,*/H \\ “--.x_'

-

I SO

: - N .

: N
1 |||||||||||||||||||||||||||||||

Preconditioning:

P[A]x = P|b]

- 3 ) 1 135 35
_ —1_ 5 |36 36
P_(C(A)) - 3 1 - 5 7
7 - 112 12
35 35 2 4 2 4
pray=|® 36 S I B
CoR [ R
12 12 7’ 7 6’6
3 _as|fps 1) s ]
_ |36 36 5’51 _ 9’9
PIOI=1S 7| 51| = |22 7
12 12 7’7 6’2
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Zeros of Systems of Interval Linear Equations

Original system: Equivalent system:
15 17 2 4 51
RIS
23 25 11 19 7
[‘7 ‘7]x1+x2—[ [‘5 g]"l”Z— ?5‘

1k

2019 Lecture 3: Interval Newton Method
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Zeros of Systems of Nonlinear Equations

f,(X, Xy, ..., X )=0

where: Xq,..., X, are the unknowns
f,(x,X,,...,x )=0 S

f,..., f, are nonlinear functions
f (X, X,y..., % )=0

LN | n

The classical Newton method can be applied to Nonliear systems

f(x
In the case of 1 variable: X1 =X —ﬂ . . _
fr(x) Jacobian matrix of f:
. 1 - of; (x)
In the case of nvariables: X, =X. —J " (X;) f(X;) with: {J (X)}ij v
X .

J

In practice the inverse of the Jacobian is not computed, instead, at each Newton
step it is solved the linear system:

J (Xi)Si =—f (Xi)
and computed a new approximation:
Xig =X 5
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Zeros of Systems of Nonlinear Equations

Example:
x% + x;x, = 10
X, + 3x,x5 =57

f()[

Classical Newton method

xZ + xyx, — 10 (x)= 2x1 + x5 X1
X, + 3x;x5 — 57 )=

3x2 1+ 6x1x,

Initial guess:  xY =15 x2=35

f@x)= [1 625

linear system to solve for step O:
[ 6.5
36.75 32 5

1.5
J@)= [36 75 325

[ 1625

o_[0.536 ]

—0.656
1 _ 0,0 _ 0536] [2036]
XT=Xx0%s [ ] [ 0.656] ~ 12.844

_ [1.999
3.002

S
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Zeros of Systems of Nonlinear Equations

f,(X, Xy, ..., X )=0

where: Xq,..., X, are the unknowns
f,(x,X,,...,x )=0 S

f,..., f, are nonlinear functions
f (X, X,y..., % )=0

The multivariate Interval Newton method

From the mean value theorem:
x€c—] 1x)f(c) where c is the midpoint of x

Consequently:
x—c€ -] Hx)f(c)
J(x)s € —f(c) with: s=x—¢c

So, at each Interval Newton step it is solved the Interval Linear System:

](x(k))s(k) — —f(c(k))

and computed a new box enclosure:
x(k+1) = x(k) N (C(k) _|_ S(k))
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Zeros of Systems of Nonlinear Equations

Interval Newton method

Example:
x% + x1x22= 10 Fx)= [x1 T X1X2 — 10] J(x)= [2x1 +2xz X1 ]
Xo + 3X1X2 =57 X2 + 3x1x2 — 57 3x2 1+ 6x1x2
"""""""" " . .o _ [[1.75,2.25] [ ]
| Initial box: x" = [[2 75,3.75] 395
S \
I \ fe)= [9 625
o 0 [ [6.25,8.25] [1.75,2.25] ]
| J)=1122.69,42.19] [29.87,51.63]
3 A Interval linear system to solve for step O:
[ [6.25,8.25] [1.75,2.25] ] 0 _ [ —0.5
| [22.69,42.19] [29.87,51.63]]° ~ |-9.625
\\ Preconditioning: P = [ 0.177 _0'009]
Lo .1 New system: 0141 0.031
Lo b * N e [ [0.739,1.261] [—0.139,0.139] —0.005
[—0.447,0.447] [0.623,1.377] —0.232

2019 Lecture

3: Interval Newton Method



Zeros of Systems of Nonlinear Equations
Example: Interval Newton method

X%+ x1x, = 10 Fx)= [x1 T X1X2 — 10] J(x)= [2x1 +2xz X1 ]
Xy + 3X1X% =57 X, + 3x1x2 — 57 3x2 1+ 6x1x2

x0 = [[[127755232755] [3 25]

\ : [ [0.739,1.261]  [—0.139,0.139] —0.005
| |[-0.447,0.447] [0.623,1.377] —0.232

] . . 0_ .0 _ .o_[[0250.25]
\ | Initial box: s° =x" —¢ —[ (—0.5,0.5]

NG 5
k‘-u\_ -"---_______- ] 1 n

D Y - (—0.005 — [-0.139,0.139]5{")
1 "'126170.739

I Gkt _ ()
\_ ] 52 S N

Co 1 1
1.0 1.5 2.0 2.5 30 _ _ (k‘l'l)
n[1.377,0.623]( 0.232 — [-0.447,0.447]s{*)
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Zeros of Systems of Nonlinear Equations

Example:
x% + x;x, = 10 flx)= [
X, + 3x,x5 =57

x1 + x1%x9 —
X, + 3x;x5 — 57

|

[0.739,1.261]
—0.447,0.447]

Initial box: s% = x% — 0 = [[[

—0.25,0.25]
—0.101,0.087] si
—0.091,0.077] s2
—0.089,0.076] s;
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Interval Newton method
] J0)= [2x1 +2x2 X1 ]

3x5 1+ 6x1x,

[1.75,2.25] [ ]
[2.75,3.75] 3.25

[—0.139,0.139] —0.005
[0.623, 1.377] —0.232

0.25,0.25]
0.5,0.5]

~0.5,0.5]

—0.445,—0.135]
—0.438,—0.139]
—0.437,—0.139]

S2

|
[
|
[
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Zeros of Systems of Nonlinear Equations

Example:
x% + x;x, = 10
X, + 3x,x5 =57

f()[

2019

Interval Newton method

xZ + xyx, — 10 (x)= 2x1 + x5 X1
X, + 3x,x% — 57 = 3a2 1+ 6x,x,
. [[1 75,2.25] [ ]
* = 112.75,3.75] 3.25
[ [0.739,1.261] [—0.139,0.139] —0.005
[—0.447,0.447] [0.623, 1.377] —0.232
—0.089,0.076]

[ 0.437,—0.139]
x® = x© q (¢© 4 sO)

[1.75,2.25] ] n( ] [ —0.089,0.076] D
[2.75,3.75]1 "' \I3.25] " |[—-0.437,-0.139]
11.75,2.25] ( [1.911,2.076] D
[2.75,3.75]] ' \|[2.813,3.111]

[1.911,2.076]

— _[2.813,3.111]] there is at least one solution
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