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Newton Method for Finding Roots of Univariate Functions

Let f be a real function, continuous in [a,b] and differentiable in (a..b) 

Accordingly to the mean value theorem: 

r1,r2[a,b] [min(r1,r2),max(r1,r2)] 
f(r1)=f(r2)+(r1  r2)f’()

If r2 is a root of f then f(r2)=0 and so: 

r1,r2[a,b] [min(r1,r2),max(r1,r2)] 
f(r1)=(r1  r2)f’()

r1,r2[a,b] [min(r1,r2),max(r1,r2)] 
r2= r1f(r1)/f’()

And solving it in order to r2: 

Therefore, if there is a root of f in [a,b] then, from any point r1 in [a,b]

the root could be computed if we knew the value of 
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Newton Method for Finding Roots of Univariate Functions
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The idea of the classical Newton method is to start with an initial

value r0 and compute a sequence of points ri that converge to a root

To obtain ri+1 from ri the value of  is approximated by ri:

ri+1= rif(ri)/f’()  rif(ri)/f’(ri)

r0r1r2
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Newton Method for Finding Roots of Univariate Functions
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Near roots the classical Newton method has quadratic convergence

r0

r1=+

However, the classical Newton method may not converge to a root!
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Interval Extension of the Newton Method

The idea of the Interval Newton method is to start with an initial

interval I0 and compute an enclosure of all the r that may be roots

r1,r[a,b] [min(r1,r),max(r1,r)] r= r1f(r1)/f’()

If r is a root within I0 then: 

r1I0
r r1f(r1)/f’(I0) (all the possible values of  are considered)

 I0

In particular, with r1=c=center(I0) we get the Newton interval function: 

r  cf(c)/f’(I0) = N(I0) 

Since root r must be within the original interval I0, a smaller safe 

enclosure I1 may be computed by: 

I1 = I0  N(I0)
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Interval Extension of the Newton Method
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The idea of the Interval Newton method is to start with an initial

interval I0 and compute an enclosure of all the r that may be roots
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Interval Extension of the Newton Method

Newton Function, Newton Step and Newton Narrowing

Newton Function. Let f be a real function, continuous and differentiable in the closed 

real interval I, and f’ its derivative. Let F and F’ be interval extensions of f and f’, 

respectively. Let c be the mid value of the interval I (c=center(I)). The interval Newton 

function N with respect to f is:    
)(

)(
)(

IF

cF
cIN


   

Newton Step. Let f be a real function, continuous and differentiable in the closed real 

interval I. Let N be the Newton function with respect to f. The Newton step function NS 

with respect to f is:  

NS(I) = I  N(I)  

Newton Narrowing. Let f be a real function, continuous and differentiable in the closed 

real interval I. Let NS be the Newton step function with respect to f. The Newton 

narrowing function NN with respect to f is:  

        if NS(I)=  

NN(I) =       I  if NS(I)=I 

NN(NS(I))  if  NS(I)I  
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Interval Extension of the Newton Method

Example of the Interval Newton Method

 

I4  

-1.0 

-3.0 

-4.0 

-2.0 

0.0 

1.0 

2.0 

f(x1) 

f E  x1 – x1

2
 FE  X1 – X 

1

2
 

0.5 2.0 1.5 1.0 

f’E  1 – 2x1 F’E  1  – 2X1
  

I0  
I1  

I2  
I3  

[cI] = [center(Ii)] 

f’(x1) 

i Ii [cI] FE([cI]) F’E(Ii) N(Ii)

0 [0.500..2.000] {1.250} [-0.313..-0.312] [-3.000..0.000] [-..1.146]

1 [0.500..1.146] {0.823} [0.145..0.146] [-1.292..0.000] [0.936..+]

2 [0.936..1.146] {1.041} [-0.042..-0.042] [-1.292..-0.872] [0.991..1.009]

3 [0.991..1.009] {1.000} [0.000..0.000] [-1.018..-0.982] [1.000..1.000]

4 [1.000..1.000] {1.000} [0.000..0.000] [-1.000..-1.000] [1.000..1.000]
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Interval Extension of the Newton Method

Extended Interval Arithmetic for the interval Newton Method

Using extended interval arithmetic, the result of the Newton

function is not guaranteed to be a single interval:

division by an interval containing zero may yield the union of two intervals

The solution could be to use the union hull of the obtained intervals

A much better approach is to intersect separately each obtained

interval with the original interval and then:

If the result of the intersection is a single interval, the Newton narrowing

can normally continue.

Otherwise, the union hull of the obtained intervals should be considered
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Properties of the Interval Newton Method

Soundness

Soundness of the Interval Newton Method with Roots. Let f be a real function, 

continuous and differentiable in the closed real interval I. If there exists a zero r0 of f in I 

then r0 is also in N(I), NS(I) and NN(I), where N, NS and NN are respectively the Newton 

function, the Newton step function and the Newton narrowing function with respect to f: 

r0 I  f(r0)=0  r0 N(I)  r0 NS(I)  r0 NN(I)    

If a zero of a function is searched within an interval then it may be

searched within a possibly narrower interval obtained by the

Newton narrowing function with the guarantee that no zero is lost

Soundness of the Interval Newton Method without Roots. Let f be a real function, 

continuous and differentiable in the closed real interval I. If NS(I)= or NN(I)= (where 

NS and NN are respectively the Newton step function and the Newton narrowing function 

with respect to f) then there is no zero of f in I: 

NS(I)=  NN(I)=  r0I  f(r0)=0  

If the result of the Newton narrowing function is the empty set then

the original interval does not contain any zero of the real function
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Properties of the Interval Newton Method

Proving the Existence of a Solution

Despite its soundness, the method is not complete: in case of non

existence of a root the result is not necessarily the empty set

Therefore obtaining a non empty set does not guarantee the

existence of a root

However, in some cases, the Newton method may guarantee the

existence of a root

Interval Newton Method to Prove the Existence of a Root. Let f be a real function, 

continuous and differentiable in the closed real interval I. Let N be the Newton function 

wrt  f. If the result of applying the Newton function to I is included in I then there exists a 

zero of f in I:  

N(I)  I  r0I  f(r0)=0  
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Properties of the Interval Newton Method

Convergence and Efficiency

The interval arithmetic evaluation of any Newton narrowing

function is guaranteed to stop

Convergence of the Interval Newton Method. Let f be a real function, continuous and 

differentiable in the closed real interval I. The interval arithmetic evaluation of the 

Newton narrowing function (NN) with respect to f will converge (to an F-interval or the 

empty set) in a finite number of Newton steps (NS).  

Convergence may be quadratic for small intervals around a simple

zero of the real function:

width(NS(n+1)(I0))  k(width(NS(n)(I0))
2

Moreover, even for large intervals the rate of convergence may be

reasonably fast (geometric):

If 0F([c]) and 0F’(I) then width(NS(I))  0.5width(I)
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Enclosing the Zeros of a Family of Functions

The method can be naturally extended to deal as well with real

functions that include parametric constants represented by intervals

The intended meaning is to represent the family of real functions

defined by any possible real instantiation for the interval constants

The existence of a root means that there is a real valued

combination, among the variable and all the interval constants, that

zeros the function
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Enclosing the Zeros of a Family of Functions
 

 

 [1.1..1.8] 

-1.0 

-3.0 

0.5 2.0 1.5 1.0 2.5 0.0 -0.5 

-4.0 

-2.0 

0.0 

-5.0 

1.0 

I0 

FE  X1  ([0.5..1.5] – X1) 

NN(I0) 

 [-0.5..0.2]  [0.3..1.0]  [1.9..2.6] 

 [0..0.001]  [0.3..1.0]  [1.1..1.554]  

F’E  [0.5..1.5] – 2X1 

If the initial interval is [-0.5,0.2] the unique zero is successfully

enclosed within a canonical F-interval [0..0.001]
(assuming that the canonical width is 0.001)
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Enclosing the Zeros of a Family of Functions
 

 

 [1.1..1.8] 

-1.0 

-3.0 

0.5 2.0 1.5 1.0 2.5 0.0 -0.5 

-4.0 

-2.0 

0.0 

-5.0 

1.0 

I0 

FE  X1  ([0.5..1.5] – X1) 

NN(I0) 

 [-0.5..0.2]  [0.3..1.0]  [1.9..2.6] 

 [0..0.001]  [0.3..1.0]  [1.1..1.554]  

F’E  [0.5..1.5] – 2X1 

If the initial interval is [0.3,1.0] it cannot be narrowed because both

FE([0.65]) and F’E([0.3..1.0]) include zero
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Enclosing the Zeros of a Family of Functions
 

 

 [1.1..1.8] 

-1.0 

-3.0 

0.5 2.0 1.5 1.0 2.5 0.0 -0.5 

-4.0 

-2.0 

0.0 

-5.0 

1.0 

I0 

FE  X1  ([0.5..1.5] – X1) 

NN(I0) 

 [-0.5..0.2]  [0.3..1.0]  [1.9..2.6] 

 [0..0.001]  [0.3..1.0]  [1.1..1.554]  

F’E  [0.5..1.5] – 2X1 

If the initial interval is [1.1,1.8] the right bound is updated to 1.554
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Enclosing the Zeros of a Family of Functions
 

 

 [1.1..1.8] 

-1.0 

-3.0 

0.5 2.0 1.5 1.0 2.5 0.0 -0.5 

-4.0 

-2.0 

0.0 

-5.0 

1.0 

I0 

FE  X1  ([0.5..1.5] – X1) 

NN(I0) 

 [-0.5..0.2]  [0.3..1.0]  [1.9..2.6] 

 [0..0.001]  [0.3..1.0]  [1.1..1.554]  

F’E  [0.5..1.5] – 2X1 

If the initial interval is [1.9,2.6] it can be proven that it does not

contain any zeros
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where: x1,…, xn are the unknowns
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Systems of Linear Equations:

nnnnnn

nn

nn

bxaxaxa

bxaxaxa

bxaxaxa












  

  

  

2211

22222121

11212111 where: x1,…, xn are the unknowns

a11,…, ann are constant coeficients

b1,…, bn are constants

unique solution

iff

exists A-1

Lecture 3: Interval Newton Method 272019



















nnnn

n

n

aaa

aaa

aaa

A







21

22221

11211



















nx

x

x

x

2

1



















nb

b

b

b

2

1

Matrix form: bAx 



Zeros of Systems of Linear Equations

Classical Solving Methods:
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• Direct Methods: 
– Ex: Gaussian Elimination

– In theory, allows to compute exact solutions with a 

finite number of elementary arithmetic operations.

– In practice, due to rounding errors, only approximate solutions are 
computed.

• Iterative Methods: 
– Ex: Gauss-Seidel Method

– The solution is the limit of a infinite series of vectors.

– In practice, only a finite number of vectors is computed.

– May not converge to a solution (converges if A is strictly diagonal 
dominant).



Zeros of Systems of Linear Equations

Example:
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Gaussian Elimination



Zeros of Systems of Linear Equations

Example:
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+
3

5
𝑥1 + 𝑥2 =

16

5

−
3

7
𝑥1 + 𝑥2 =

24

7

𝑎11 𝑎12 𝑏1
𝑎21 𝑎22 𝑏2

𝑎11 𝑎12 𝑏1
𝑎22 − 𝑎21𝑎12/𝑎11 𝑏2 − 𝑏1𝑎21/𝑎11

𝑥2 =
𝑏2 − 𝑏1𝑎21/𝑎11
𝑎22 − 𝑎21𝑎12/𝑎11

=
10

3
~3.33

𝑥1 =
𝑏1 − 𝑎12𝑥2

𝑎11
= −

2

9
~ − 0.22

Gaussian Elimination
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Example:
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Zeros of Systems of Linear Equations

Example:
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Zeros of Systems of Linear Equations

Example:
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−
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7
𝑥1 + 𝑥2 =
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7

Gauss-Seidel

3,0 0

2

0

1  xx

Initial guess:

Iteration:

⋮

33.0~3/13)3/5(3/16)1(

1 x

57.3~7/25)3/1)(7/3(7/24)1(

2 x

62.0~21/13)7/25)(3/5(3/16)2(

1 x

59.3~49/176)21/13)(7/3(7/24)2(

2 x

65.0~49/32)49/176)(3/5(3/16)3(

1 x

15.3~343/1080)49/32)(7/3(7/24)3(

2 x



Zeros of Systems of Interval Linear Equations

Systems of Interval Linear Equations:

][][ ][ ][

][][ ][ ][

][][ ][ ][

2211

22222121

11212111

nnnnnn
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nn
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






 where: x1,…, xn are the unknowns

[a11],…, [ann] are interval coeficients

[b1],…, [bn] are interval constants
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Solution set: 𝑥 ∃𝐴∈[𝐴]∃𝑏∈[𝑏]𝐴𝑥 = 𝑏



Zeros of Systems of Interval Linear Equations

Example:
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Zeros of Systems of Interval Linear Equations

Example:
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Zeros of Systems of Interval Linear Equations

Example:
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2

5
,
4

5
𝑥1 + 𝑥2 = [

15

5
,
17

5
]

−
4

7
, −

2

7
𝑥1 + 𝑥2 = [

23

7
,
25

7
]

𝑥2 ∈
[𝑏2] − [𝑏1][𝑎21]/[𝑎11]

𝑎22 − [𝑎21][𝑎12]/[𝑎11]

𝑥1 ∈
[𝑏1] − [𝑎12]𝑥2

[𝑎11]

Gaussian Elimination

𝑥2 ∈
[
23
7 ,

25
7 ] − [

15
5
,
17
5
][−

4
7 ,−

2
7]/[

2
5
,
4
5
]

1 − [−
4
7
, −

2
7
][1]/[

2
5
,
4
5
]

𝑥1 ∈

15
5
,
17
5

− [1]𝑥2

[
2
5
,
4
5
]

=
61

34
,
118

19
~[1.79,6.21]

= −
305

38
,
273

68
~[−8.03,4.01]

too large

enclosure
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Example:
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2

5
,
4

5
𝑥1 + 𝑥2 = [

15

5
,
17

5
]

−
4

7
, −

2

7
𝑥1 + 𝑥2 = [

23

7
,
25

7
]

Gauss-Seidel

Initial box: −2.5,2.5 × [1.5,4.5]

𝑥1
(𝑘+1)

= 𝑥1
(𝑘)

∩
5

4
,
5

2

15

5
,
17

5
− 𝑥2

(𝑘)

𝑥2
(𝑘+1)

= 𝑥2
(𝑘)

∩
23

7
,
25

7
+

2

7
,
4

7
𝑥1
(𝑘+1)

𝑥1
1 = −2.5,2.5 𝑥2

1 = 1.5,4.5

𝑥1
0 = −2.5,2.5 𝑥2

0 = 1.5,4.5

no contraction!



Zeros of Systems of Interval Linear Equations
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Interval Gauss-Seidel

• Preconditioning: 

– Transform the interval linear system into an equivalent 
system:

• same solution space 

• easier to enclose by the Gauss-Seidel method

– Multiply both sides of the the interval linear system by a real 
matrix P (preconditioner):

– Usually, P is the inverse of the real matrix formed by the 
midpoints of A:

][][ bPxAP 

𝑃 = (𝑐 𝐴 )−1
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2

5
,
4

5
𝑥1 + 𝑥2 =

15

5
,
17

5

−
4

7
, −

2

7
𝑥1 + 𝑥2 =

23

7
,
25

7

Preconditioning:

𝑃 = (𝑐 𝐴 )−1=

3

5
1

−
3

7
1

−1

=

35

36
−
35

36
5

12

7

12

][][ bPxAP 

𝑃[𝐴] = 

35

36
−

35

36
5

12

7

12

2

5
,
4

5
1

−
4

7
, −

2

7
1

=

2

3
,
4

3
0

−
1

6
,
1

6
1

𝑃[𝑏] = 

35

36
−

35

36
5

12

7

12

15

5
,
17

5
23

7
,
25

7

=
−

5

9
,
1

9
19

6
,
7

2
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2

5
,
4

5
𝑥1 + 𝑥2 =

15

5
,
17

5

−
4

7
, −

2

7
𝑥1 + 𝑥2 =

23

7
,
25

7

Equivalent system:
2

3
,
4

3
𝑥1 = −

5

9
,
1

9

−
1

6
,
1

6
𝑥1 + 𝑥2 =

19

6
,
7

2

Original system:

Gauss-Seidel
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where: x1,…, xn are the unknowns

f1,…, fm are nonlinear functions
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The classical Newton method can be applied to Nonlinear systems

)(

)(
1

i

i
ii

xf

xf
xx


In the case of 1 variable:

Jacobian matrix of f:

In the case of n variables: )()(1

1 iiii fJ xxxx


   
j

i
ij

x

f
J






)(
)(

x
xwith:

In practice the inverse of the Jacobian is not computed, instead, at each Newton 

step it is solved the linear system:

)()( iii fJ xsx 

and computed a new approximation:

iii sxx 1
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𝑥1
2 + 𝑥1𝑥2 = 10

𝑥2 + 3𝑥1𝑥2
2 = 57

𝑥1
0 = 1.5 𝑥2

0 = 3.5Initial guess:

𝑓(𝒙𝟎)=
−2.5
1.625

𝐽(𝒙𝟎)=
6.5 1.5
36.75 32.5

linear system to solve for step 0:

6.5 1.5
36.75 32.5

𝒔𝟎 =
2.5

−1.625

𝒔𝟎~
0.536
−0.656

𝒙𝟏 = 𝒙𝟎+𝒔𝟎 =
1.5
3.5

+
0.536
−0.656

=
2.036
2.844

𝒙𝟐 =
1.999
3.002

𝑓(𝒙)=
𝑥1
2 + 𝑥1𝑥2 − 10

𝑥2 + 3𝑥1𝑥2
2 − 57

𝐽(𝒙)=
2𝑥1 + 𝑥2 𝑥1
3𝑥2

2 1 + 6𝑥1𝑥2

Classical Newton method 
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where: x1,…, xn are the unknowns

f1,…, fm are nonlinear functions
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The multivariate Interval Newton method

Consequently:

𝒙 − 𝑐 ∈ −𝐽−1 𝒙 𝑓(𝑐)

𝐽 𝒙 𝒔 ∈ −𝑓(𝑐) with: 𝒔 = 𝒙 − 𝑐

So, at each Interval Newton step it is solved the Interval Linear System:

and computed a new box enclosure:

𝒙(𝑘+1) = 𝒙(𝑘) ∩ 𝑐(𝑘) + 𝒔(𝑘)

𝐽 𝒙(𝑘) 𝒔(𝑘) = −𝑓(𝑐(𝑘))

where c is the midpoint of 𝒙𝒙 ∈ 𝑐 − 𝐽−1 𝒙 𝑓(𝑐)

From the mean value theorem:
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Example:
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𝑥1
2 + 𝑥1𝑥2 = 10

𝑥2 + 3𝑥1𝑥2
2 = 57

Interval linear system to solve for step 0:

[6.25,8.25] [1.75,2.25]
[22.69,42.19] [29.87,51.63]

𝒔𝟎 =
−0.5

−9.625

𝑓(𝒙)=
𝑥1
2 + 𝑥1𝑥2 − 10

𝑥2 + 3𝑥1𝑥2
2 − 57

𝐽(𝒙)=
2𝑥1 + 𝑥2 𝑥1
3𝑥2

2 1 + 6𝑥1𝑥2

Interval Newton method 

Initial box:

𝑓(𝑐0)=
0.5
9.625

𝐽(𝒙𝟎)=
[6.25,8.25] [1.75,2.25]
[22.69,42.19] [29.87,51.63]

𝒙𝟎 =
[1.75,2.25]
[2.75,3.75]

𝑐0 =
2
3.25

Preconditioning: 𝑃 =
0.177 −0.009
−0.141 0.031New system:

[0.739,1.261] [−0.139,0.139]

[−0.447,0.447] [0.623, 1.377]
𝒔𝟎 =

−0.005
−0.232
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𝑥1
2 + 𝑥1𝑥2 = 10

𝑥2 + 3𝑥1𝑥2
2 = 57

𝑓(𝒙)=
𝑥1
2 + 𝑥1𝑥2 − 10

𝑥2 + 3𝑥1𝑥2
2 − 57

𝐽(𝒙)=
2𝑥1 + 𝑥2 𝑥1
3𝑥2

2 1 + 6𝑥1𝑥2

Interval Newton method 

𝒙𝟎 =
[1.75,2.25]
[2.75,3.75]

𝑐0 =
2
3.25

[0.739,1.261] [−0.139,0.139]

[−0.447,0.447] [0.623, 1.377]
𝒔𝟎 =

−0.005
−0.232

Initial box: 𝒔𝟎 = 𝒙𝟎 − 𝑐0 =
[−0.25,0.25]

[−0.5,0.5]

𝑠1
(𝑘+1)

= 𝑠1
(𝑘)

∩

∩
1

1.261
,

1

0.739
−0.005 − [−0.139,0.139]𝑠2

(𝑘)

∩
1

1.377
,

1

0.623
−0.232 − [−0.447,0.447]𝑠1

(𝑘+1)

𝑠2
(𝑘+1)

= 𝑠2
(𝑘)

∩
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𝑥1
2 + 𝑥1𝑥2 = 10

𝑥2 + 3𝑥1𝑥2
2 = 57

𝑓(𝒙)=
𝑥1
2 + 𝑥1𝑥2 − 10

𝑥2 + 3𝑥1𝑥2
2 − 57

𝐽(𝒙)=
2𝑥1 + 𝑥2 𝑥1
3𝑥2

2 1 + 6𝑥1𝑥2

Initial box:

Interval Newton method 

𝒙𝟎 =
[1.75,2.25]
[2.75,3.75]

𝑐0 =
2
3.25

[0.739,1.261] [−0.139,0.139]

[−0.447,0.447] [0.623, 1.377]
𝒔𝟎 =

−0.005
−0.232

𝒔𝟎 = 𝒙𝟎 − 𝑐0 =
[−0.25,0.25]

[−0.5,0.5]

𝑠1
0 = −0.25,0.25 𝑠2

0 = −0.5,0.5

𝑠1
1 = −0.101,0.087 𝑠2

1 = −0.445, −0.135

𝑠1
2 = −0.091,0.077 𝑠2

2 = −0.438, −0.139

𝑠1
∗ = −0.089,0.076 𝑠2

∗ = −0.437,−0.139
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𝑥1
2 + 𝑥1𝑥2 = 10

𝑥2 + 3𝑥1𝑥2
2 = 57

𝑓(𝒙)=
𝑥1
2 + 𝑥1𝑥2 − 10

𝑥2 + 3𝑥1𝑥2
2 − 57

𝐽(𝒙)=
2𝑥1 + 𝑥2 𝑥1
3𝑥2

2 1 + 6𝑥1𝑥2

there is at least one solution

Interval Newton method 

𝒙𝟎 =
[1.75,2.25]
[2.75,3.75]

𝑐0 =
2
3.25

[0.739,1.261] [−0.139,0.139]

[−0.447,0.447] [0.623, 1.377]
𝒔𝟎 =

−0.005
−0.232

𝒔𝟎 =
[−0.089,0.076]

[−0.437,−0.139]

𝒙(1) = 𝒙(0) ∩ 𝑐(0) + 𝒔(0)

=
[1.75,2.25]
[2.75,3.75]

∩
2
3.25

+
[−0.089,0.076]
[−0.437, −0.139]

=
[1.75,2.25]
[2.75,3.75]

∩
[1.911,2.076]
[2.813,3.111]

=
[1.911,2.076]
[2.813,3.111]


