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Basic Concepts

Constraint. A constraint c is a pair (s,), where s is a tuple of m variables <x1, x2,…, xm>, 

the constraint scope, and  is a relation of arity m, the constraint relation. The relation  

is a subset of the set of all m-tuples of elements from the Cartesian product 

D1D2…Dm where Di is the domain of the variable xi: 

  {<d1, d2, …, dm> | d1  D1, d2  D2, …, dm  Dm} ❑ 

Constraint Satisfaction Problem. A CSP is a triple P=(X,D,C) where X is a tuple of n 

variables <x1, x2, …, xn>, D is the Cartesian product of the respective domains 

D1D2…Dn, i.e. each variable xi ranges over the domain Di, and C is a finite set of 

constraints where the elements of the scope of each constraint are all elements of X.  ❑ 
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Basic Concepts

Constraint Satisfaction. Let P=(X,D,C) be a CSP. Let (s,) be a constraint from C and d 

an element of D:  

d satisfies (s,) iff d[s]   ❑ 

Solution. A solution to the CSP P=(X,D,C) is a tuple dD that satisfies each constraint 

cC, that is:  

d is a solution of P  iff  cC  d satisfies c ❑ 

Consistency. A CSP P=(X,D,C) is consistent iff it has at least one solution (otherwise it 

is inconsistent):  

P is consistent iff dD  d is a solution of P ❑ 
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Basic Concepts

Continuous Constraint Satisfaction Problem. A CCSP is a CSP P=(X,D,C) where each 

domain is an interval of ℝ and each constraint relation is defined as a numerical equality 

or inequality: 

i)  D=<D1,…,Dn> where Di is a real interval  (1 i  n) 

ii) cC  c is defined as ec⋄0 where ec is a real expression and ⋄ {,=,} ❑ 

R-interval. A real interval is a connected set of reals. Let ab be reals, the following 

notations for representing real intervals will be used: 

[a..b]  {r  ℝ | a  r  b } (a..b)  {r  ℝ | a < r < b } 

(a..b]  {r  ℝ | a < r  b } [a..b)  {r  ℝ | a  r < b } 

[a..+)  {r  ℝ | a  r } (a..+)  {r  ℝ | a < r } 

(-..b]  {r  ℝ | r  b } (-..b)  {r  ℝ | r < b } 

(-..+)  ℝ   {} 

The notation <a..b> will represent a nonempty real interval of any of the defined forms. ❑ 
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Representation of Continuous Domains

F-Numbers, Intervals and Boxes

F-numbers. Let F be a subset of ℝ containing the real number 0 as well as finitely many 

other reals, and two elements (not reals) denoted by - and +:  

F = {r0,…,rn}  {-,+}  with  0  {r0,…,rn}  ℝ 

The elements of F are called F-numbers.  ❑ 

any two real elements of F are ordered as in ℝ

F is totally ordered:

- < r < + for all real element r

--=- and ++=+

If f is an F-number, f- and f+ are the two F-numbers 

immediately below and above f in the total order:

-+ is the smallest real in F and +- is the largest real in F

2020

More precision around 0: F
- +
• •• •• • • • • • • • • •• •• •••
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Representation of Continuous Domains

F-interval. An F-interval is a real interval <a..b> where a and b are F-numbers.  

In particular, if b=a or b=a+ then <a..b> is a canonical F-interval. ❑ 

 

ℝ 

F 

F-intervals 

R-intervals 

r1 r2 r3 

a b c d - + 

[r1..r1] (r2.. r3] 

[a..b] [c..d] 

canonical 

degenerate 

•    • •    • •    • •    • •    • •    • •    • •    • •    • •     

In the following we only consider closed F-intervals: [a,b] 

If a=b the interval is degenerated and is represented as a

F-Numbers, Intervals and Boxes

2020



Lecture 2: Intervals, Interval Arithmetic and Interval Functions 8

Representation of Continuous Domains

Extending the interval concepts to multiple dimensions:

F-Numbers, Intervals and Boxes

R-box. An R-box BR with arity n is the Cartesian product of n R-intervals and is denoted 

by <IR1,…,IRn> where each IRi is an R-interval:  

BR = {<r1, r2, …, rm> | r1  IR1, r2  IR2, …, rn  IRn} ❑ 

F-box. An F-box BF with arity n is the Cartesian product of n F-intervals and is denoted 

by <IF1,…,IFn> where each IFi is an F-interval:  

BF = {<r1, r2, …, rm> | r1  IF1, r2  IF2, …, rn  IFn} 

In particular, if all the F-intervals IFi are canonical then BF is a canonical F-box. ❑ 
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Representation of Continuous Domains

Interval Operations and Basic Functions

All the usual set operations may also be applied on intervals:

 (intersection)

 (union)

 (inclusion)

A particularly useful operation is the union hull (⊎):

Union Hull. Let I1=<
1
a1..b1>1

 and I2=<
2
a2..b2>2

 be two intervals. The union hull operation 

(⊎) is defined as:  

  I1I2 if  I1I2 

I1⊎I2  = <
1
a1..b2>2

 if  r1I1
r2I2

 r1<r2  

  <
2
a2..b1>1

 if  r1I1
r2I2

 r2<r1 ❑ 

In the case of closed intervals [a,b] and [c,d]:

[a,b] ⊎ [c,d] = [min(a,c),max(b,d)]
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Representation of Continuous Domains

Interval Operations and Basic Functions

Interval Basic Functions. Let [a..b] be a closed interval. The following basic functions 

return a real value and are defined as: 

left([a..b]) = a right([a..b]) = b 

center([a..b]) = (a+b)/2 width([a..b]) = b-a 

Let [a..b] be a closed F-interval. The following basic functions return a canonical 

F-interval and are defined as: 

[a] if a=b [b]  if a=b 

[a..a+] if a<b [b-..b]  if a<b ❑ 
cleft([a..b]) =  cright([a..b]) =  

 

ℝ 

F 

F-intervals 

center([c..d]

) 
right([c..d]) 

a b c d - + 

[a..b] [c..d] 

[a..b] ⊎ [c..d] 

cright([c..d]

) 
cleft([c..d]) 

left([c..d]) 

•    • •    • •    • •    • •    • •    • •    • •    • •    • •     
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Representation of Continuous Domains

Interval Approximations

Interval Approximation. Let IR=<a..b> be a real interval. The interval approximation of 

IR, denoted Iapx(IR), is the smallest F-interval including IR (IR  Iapx(IR)): 

Iapx(IR)=[a ..b].  

In the special case where IR is a single real {r}=[r..r] then Iapx(IR)=[r ..r]. ❑ 

Set Approximation. Let SR be a set of real values defined by the union of n real intervals 

(SR=IR1…IRn). The set approximation of SR, denoted Sapx(SR), is the set defined by 

the union of the n corresponding interval approximations: 

Sapx(SR) = Iapx(IR1) … Iapx(IRn)  ❑ 

Hull Approximation. Let SR be a set of real values defined by the union of n real 

intervals (SR=IR1…IRn). The hull approximation of SR, denoted Ihull(SR), is the 

F-interval defined by: 

Ihull(SR) = Iapx(IR1) ⊎…⊎ Iapx(IRn)  ❑ 

For any real number r we will denote by:
r the largest F-number not greater than r        (− = −)

r the smallest F-number not smaller than r (+ = +)

2020



Lecture 2: Intervals, Interval Arithmetic and Interval Functions 12

Representation of Continuous Domains

Interval Approximations

For any real number r we will denote by:
r the largest F-number not greater than r        (− = −)

r the smallest F-number not smaller than r (+ = +)

 

F-intervals 

Iapx([r1..r1]) 
r1]) 

Iapx((r2..r3]) 

Sapx([r1..r1]  (r2..r3]) 

Ihull([r1..r1]  (r2..r3]) 

ℝ 

F 

r1 r2 r3

r 

r1 r1 r2 r3 - + 
•    • •    • •    • •    • •    • •    • •    • •    • •    • •     
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Interval Arithmetic

Interval arithmetic is an extension of real arithmetic for intervals

Basic Interval Arithmetic Operators

Basic Interval Arithmetic Operators. Let I1 and I2 be two real intervals (bounded and 

closed). The basic arithmetic operations on intervals are defined by: 

I1  I2 = { r1  r2 | r1  I1   r2  I2}       with        {+,-,,/} 

except that I1/I2 is not defined if 0I2. ❑ 

The basic operators are redefined for intervals:

the result is the set obtained by applying the operator to 

any pair of reals from the interval operands

Evaluation Rules for the Basic Operators. Let [a..b] and [c..d] be two real intervals 

(bounded and closed): 

[a..b] + [c..d] = [a+c..b+d]  [a..b] - [c..d] = [a-d..b-c]  

[a..b]  [c..d] = [min(ac,ad,bc,bd)..max(ac,ad,bc,bd)]  

[a..b]  / [c..d] = [a..b]  [1/d..1/c]    if  0[c..d] ❑ 

Algebraic rules may be defined to evaluate any basic 

operation on intervals in terms of formulas for its bounds
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Interval Arithmetic

Algebraic Properties

Most algebraic properties of real arithmetic also hold for 

interval arithmetic: the distributive law is an exception

Algebraic Properties of the Basic Operators. Let I1, I2, I3 and I4 be real intervals 

(bounded and closed). The following algebraic properties hold for the basic interval 

operations: 

Commutativity: I1+I2=I2+I1 (interval addition) 

 I1I2=I2I1 (interval multiplication) 

Associativity: (I1+I2)+I3=I1+(I2+I3) (interval addition) 

 (I1I2)I3=I1(I2I3) (interval multiplication)  

Neutral Element: I1+[0..0]=I1 (interval addition) 

 I1[1..1]=I1 (interval multiplication) 

Subdistributivity: I1(I2+I3)I1I2+I1I3  

Inclusion Monotonicity: I1I3  I2 I4   I1I2  I3 I4  

 (with: {+,-,,/} and I3I4 defined) ❑ 

Inclusion monotonicity is an important new concept
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Interval Arithmetic

Algebraic Properties

Example of Subdistributivity:

I1=[0..1] 

I2=[2..3] 

I3=[-2..-1] 

[0..3]     +  [-2..0] 

 I1(I2+I3) 

  [0..1]([2..3]+[-2..-1]) 

  [0..1]        [0..2] 

[0..2] 

I1I2+I1I3 

[0..1][2..3]+[0..1][-2..-1] 

[-2..3]  

 

Example of Inclusion monotonicity:
(the same operations with smaller domains)

 

I1=[0.5..1] 

I2=[2..2.5] 

I3=[-2..-1] 

[1..2.5]     +  [-2..-0.5] 

 I1(I2+I3) 

  [0.5..1]([2..2.5]+[-2..-1]) 

  [0.5..1]        [0..1.5] 

[0..1.5] 

I1I2+I1I3 

[0.5..1][2..2.5]+[0.5..1][-2..-1] 

[-1..2]  

 
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Interval Arithmetic

Safe Evaluation

In interval arithmetic computations the correct real values 

must be always within the bounds of the resulting interval

Outward rounding forces the result of any basic interval 

arithmetic operation to be the interval approximation of 

the correct real interval (obtained with infinite precision)

Outward Rounding Evaluation Rules of the Basic Operators. Let [a..b] and [c..d] be 

two F-intervals (bounded and closed): 

[a..b] + [c..d] = [a+c..b+d]  [a..b] - [c..d] = [a-d.. b-c]  

[a..b]  [c..d] = [min(ac, ad, bc, bd)..max(ac, ad, bc, bd)]  

[a..b] / [c..d] = [a..b]  [1/d..1/c]    if  0[c..d] ❑ 

If  is a basic interval arithmetic operator then apx denotes the 

corresponding outward evaluation rule: apx(I1,…,Im)=Iapx((I1,…,Im))
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Interval Arithmetic

Safe Evaluation

In interval arithmetic computations the correct real values 

must be always within the bounds of the resulting interval

The correctness of the interval arithmetic computations is 

guaranteed by the inclusion monotonicity property:
if the correct real values are within the operand intervals then

the correct real values resulting from any interval arithmetic

operation must also be within the resulting interval.

The computation of a successive composition of basic

arithmetic operations over real intervals preserve the

correct real values within the final resulting interval
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Interval Arithmetic

Extended Interval Arithmetic

Extensions on the definition of the division operator:
allow division by an interval containing 0

if c<0<d then [a,b]/[c,d]=[a,b]/[c,0−]  [a,b]/[0+,d]

[1,2]/[−1,1] = [1,2]/[−1,0−]  [1,2]/[0+,1]

[−,−1]  [1,+] 

Extensions on the real intervals allowed as arguments:
allow open intervals and infinite bounds

(−,−1]+[−1,3] = (−,2] 

(−,−1]+[−1,+) = (−,+)

Extensions on the set of basic interval operators:
allow other elementary functions (exp, log, power, sin, cos…)
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Interval Arithmetic

Extended Interval Arithmetic

The exponential function is monotonic increasing over R

2020

exp([a,b]) = [exp(a),exp(b)] 
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Interval Arithmetic

Extended Interval Arithmetic

The logarithm function is monotonic increasing over (0, +)

2020

log([a,b])=

[log(a),log(b)]

[−,log(b)]

if a>0

otherwise

if a0<b

Ø
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Interval Arithmetic

Extended Interval Arithmetic

The square function is monotonic increasing over (0, +) 

and monotonic decreasing over (−,0) 

2020

[a,b]2  =
[0,max(a2,b2)]

[min(a2,b2),max(a2,b2)]

if a0b

otherwise
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Interval Arithmetic

Extended Interval Arithmetic

The sin function is periodic with period 2

2020

c =
−1

min(sin(a),sin(b))
if a3/2b
otherwise

sin([a,b]) = [c,d] with:

d =
1

max(sin(a),sin(b))
if a/2b
otherwise
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Interval Functions

Interval Expressions and their Evaluation

Real and Interval Expressions. An expression E is an inductive structure defined in the 

following way: 

 (i) a constant is an expression; 

 (ii) a variable is an expression; 

 (iii) if E1,…,Em are expressions and  is a m-ary basic operator  

  then (E1,…,Em) is an expression; 

A real expression is an expression with real constants, real valued variables and real 

operators. An interval expression is an expression with interval constants, interval valued 

variables and interval operators. ❑ 

If x1, x2 and x3 are real valued variables then (x1+x2)(x3-) is a real

expression with three binary real operators (+,  and -) and a real constant ().

If X1 and X2 are interval valued variables then (X1+cos([0..]X2)) is an

interval expression with two binary interval operators (+ and ), a unary

interval operator (cos) and an interval constant ([0..]).
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Interval Functions

Interval Expressions and their Evaluation

Evaluation of an Interval Expression. Let F be the n-ary interval function represented 

by the interval expression FE, and B an n-ary R-box. The interval arithmetic evaluation of 

FE wrt B is an interval function recursively defined as: 

  Iapx(I)   if FE  I   (I is an interval constant) 

      FE(B) = Iapx(B[Xi])    if FE  Xi   (Xi is an interval variable)  

  apx(E1(B),…, Em(B)) if FE  (E1,…,Em) ( is an interval operator)  ❑ 

Interval arithmetic provides a safe method for evaluating 

an interval expression:
replace each variable by its interval domain;

apply recursively the basic operator evaluation rules

The interval arithmetic evaluation of an interval

expression provides a sound computation of the interval

function represented by the expression
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Interval Functions

Interval Expressions and their Evaluation

 

FE(I) 

-1.0 

-3.0 

0.5 2.0 1.5 1.0 2.5 0.0 -0.5 

-4.0 

-2.0 

0.0 

-5.0 

1.0 

2.0 

F([0.5]) 
F([1.0]) 

F([1.5]) 

F([2.0]) 

F(I) 

I = [0.5..2.0] 

FE  X1  ([0.5..1.5] – X1) 

Soundness of the Interval Expression Evaluation. Let FE be an interval expression 

representing the n-ary interval function F, and B an n-ary R-box. The interval arithmetic 

evaluation of FE with respect to B is sound:  

F(B) FE(B) ❑ 
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Interval Functions

Interval Extensions

Interval Extension of a Real Function. Let f be an n-ary real function with domain Df, 

and F an n-ary interval function. The interval function F is an interval extension of the 

real function f iff:  

<r1,…,rn>Df
  f(<r1,…,rn>) F(<[r1..r1],…,[rn..rn]>)  ❑ 

Consequently, F provides a sound evaluation of f in the sense that

the correct real value is not lost

If F is an interval extension of f then each real value mapped by f

must lie within the interval mapped by F when the argument is the

corresponding box of degenerate intervals

The interval arithmetic evaluation of any expression representing

an interval extension of a real function provides a sound evaluation

for its range and is itself an interval extension of the real function
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Interval Functions

Interval Extensions

Soundness of the Evaluation of an Interval Extension. Let F be an interval extension 

of an n-ary real function f, FE an interval expression representing F, and B be n-ary 

R-box. Then, both F(B) and FE(B), enclose the range of f over B:  

f*(B)  F(B)  FE(B) ❑ 

 

-1.0 

-3.0 

0.5 2.0 1.5 1.0 2.5 0.0 -0.5 

-4.0 

-2.0 

0.0 

-5.0 

1.0 

2.0 

FE(I) F(I) 

FE  X1  ([0.5..1.5] – X1) 

f*(I) 

fE  x1 – x1

2
 

f(x1) 

I = [0.5..2.0] 

2020



Lecture 2: Intervals, Interval Arithmetic and Interval Functions 28

Interval Functions

Interval Extensions

Natural Interval Expression. If fE is a real expression representing the real function f, 

then its natural interval expression Fn is obtained by replacing in fE: each real variable xi 

by an interval variable Xi; each real constant k by the real interval [k..k], and each real 

operator by the corresponding interval operator. ❑ 

Natural Interval Extension. Let fE be a real expression representing the real function f, 

and Fn be the natural interval expression of fE. The interval function F represented by Fn 

is the smallest interval enclosure for the range of f and the interval arithmetic evaluation 

of Fn is an interval extension of f denominated Natural interval extension w.r.t. fE. ❑ 

Several equivalent real expressions may represent the same real function f.

Consequently, the natural interval extensions with respect to these

equivalent real expressions are all interval extensions of f.
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Interval Functions

Interval Extensions

-1.0 

-3.0 

-4.0 

-2.0 

0.0 

1.0 

2.0 

FE
2
(I) 

f*(I) 

f E
1
  x1 – x1

2
 

f(x) 

0.5 2.0 1.5 1.0 

I = [0.5..2.0] 

FE
1
  X1 – X 

1

2
 

f E
2
  x1  (1.0 – x1) FE

2
  X1  (1.0 – X1) 

f E
3
  0.25 - (x1 – 0.5)2 F E

3
  0.25 - (X1 – 0.5)2 

FE
3
(I) 

F(I) 

FE
1
(I) 

Intersection of Interval Extensions. Let F1 and F2 be two n-ary interval functions and B 

an n-ary R-box. Let F be an n-ary interval function defined by: F(B)=F1(B)F2(B).  

If F1 and F2 are interval extensions of the real function f, then F is also an interval 

extension of f.  ❑ 

2020



Lecture 2: Intervals, Interval Arithmetic and Interval Functions 30

Interval Functions
Interval Extensions

Decomposed Evaluation of an Interval Extension. Let F be an interval extension of the 

n-ary real function f, and FE an interval expression representing F. Let B, B1 and B2 be 

n-ary R-boxes. If B=B1B2 then: 

F(B)  FE(B1)FE(B2)  FE(B) ❑ 

 

-1.0 

-3.0 

-4.0 

-2.0 

0.0 

1.0 

2.0 

f(x1) 

f E
1
  x1 – x1

2
 FE

1
  X1 – X 

1

2
 

F(I) 

FE
1
(I) 

FE
1
(I2) 

FE
1
(I1) 

FE
1
(I1)  FE

1
(I2) 

 

0.5 2.0 1.5 1.0 

I = [0.5..2.0] 

I2 = [1.25..2.0] 
I1 = [0.5..1.25] 
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Interval Functions

Interval Extensions
Dependency Problem. In the interval arithmetic evaluation of an interval expression, 

each occurrence of the same variable is treated as a different variable. The dependency 

between the different occurrences of a variable in an expression is lost. ❑ 

No Overestimation Without Multiple Variable Occurrences. Let FE be an interval 

expression representing the n-ary interval function F, and B an n-ary R-box. If FE is an 

interval expression in which each variable occurs only once then: 

F(B) = FE(B) (w/ exact interval operators and infinite precision arithmetic evaluation)❑ 

-1.0 

-3.0 

-4.0 

-2.0 

0.0 

1.0 

2.0 

FE
2
(I) 

f*(I) 

f E
1
  x1 – x1

2
 

f(x) 

0.5 2.0 1.5 1.0 

I = [0.5..2.0] 

FE
1
  X1 – X 

1

2
 

f E
2
  x1  (1.0 – x1) FE

2
  X1  (1.0 – X1) 

f E
3
  0.25 - (x1 – 0.5)2 F E

3
  0.25 - (X1 – 0.5)2 

FE
3
(I) 

F(I) 

FE
1
(I) 

occurs only once

no overestimation

2020
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Interval Functions

Strategies to reduce overestimation

2020

Compute equivalent expressions to avoid multiple occurrences

Split the domain, evaluate the interval extensions over each

sub-domain and compute the union hull

Use monotonicity based techniques

Use centered forms extensions
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Interval Functions

Strategies to reduce overestimation

2020

Compute equivalent expressions to avoid multiple occurrences

Standard form

𝑎 + 𝑏𝑥 − 𝑐𝑥2 + 𝑑𝑥3

Horner form

𝑎 + 𝑥 𝑏 + 𝑥 𝑐 + 𝑑𝑥

Factored form

(𝑥 − 𝑎) 𝑥 − 𝑏)(𝑥 − 𝑐

𝑓(𝑥)

−6 + 11𝑥 − 6𝑥2 + 𝑥3 −6 + 𝑥 11 + 𝑥 −6 + 𝑥(𝑥 − 1) 𝑥 − 2)(𝑥 − 3𝑓(𝑥)

𝐹([0.5,3.5]) [−73.875, 73.875] [−9.375, 9.375] [−34.875, 28.125]

𝑓 ([0.5, 3.5])
[-1.875,1.875]

∗
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Interval Functions

Strategies to reduce overestimation

2020

Split the domain, evaluate the interval extensions over each

sub-domain and compute the union hull

Factored form

𝑓(𝑥)

(𝑥 − 1) 𝑥 − 2)(𝑥 − 3𝑓(𝑥)

𝐹([0.5,1.5]) [−1.875, 1.875]

𝑓 ([0.5, 3.5])
[-1.875,1.875]

∗

𝐹([1.5,2.5]) [−1.125, 1.125]

𝐹([2.5,3.5]) [−1.875, 1.875]
⊎ = [−1.875, 1.875]
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Interval Functions

Strategies to reduce overestimation

2020

Use monotonicity based techniques

𝑓(𝑥)

𝑓 ([0.5, 3.5])
[-1.875,1.875]

∗

If 𝑓 is increasing monotonic in [𝑎, 𝑏]: 𝐹 𝑎, 𝑏 = [𝑓 𝑎 , 𝑓(𝑏)]

If 𝑓 is decreasing monotonic in [𝑎, 𝑏]: 𝐹 𝑎, 𝑏 = [𝑓 𝑏 , 𝑓(𝑎)]

−6 + 11𝑥 − 6𝑥2 + 𝑥3𝑓(𝑥)

11−12𝑥 + 3𝑥2𝑓′(𝑥)

𝑓′ 𝑥 = 0 𝑥 = 2 ± 1/ 3

𝐹 0.5,2 − 1/ 3 = [𝑓 0.5 , 𝑓(2 − 1/ 3)]

𝐹 2 − 1/ 3, 2 + 1/ 3 = [𝑓 2 + 1/ 3 , 𝑓(2 − 1/ 3)]

𝐹 2 + 1/ 3, 3.5 = [𝑓 2 + 1/ 3 , 𝑓(3.5)]
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Interval Functions

Strategies to reduce overestimation

2020

Use centered forms extensions: Mean Value Extension

Accordingly to the mean value theorem: 

x,c[a,b] [a,b] f(x)=f(c)+ f’() (x− c)

Let f be a real function, continuous in [a,b] and differentiable in (a,b) 

Since [a,b]: 

x,c[a,b] f(x) ϵ f(c)+ f’([a,b]) (x− c)

The mean value extension of f over [a,b] centered at c is defined as:

Fc (x) = f(c)+ F’([a,b]) (x− c)

−6 + 11𝑥 − 6𝑥2 + 𝑥3𝑓(𝑥)

11−12𝑥 + 3𝑥2𝑓′(𝑥)

𝑎, 𝑏 [0.5,1]

With: 
11−12[0.5,1] + 3[0.5,1]2𝐹′([0.5,1]) =

= [−0.25,8]

Fc (x) = −0.703125+ [−0.25,8](x− 0.75)

−0.703125𝑓 0.75 =
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Interval Functions

Strategies to reduce overestimation

2020

Use centered forms extensions: Mean Value Extension

−6 + 11𝑥 − 6𝑥2 + 𝑥3𝑓(𝑥)

11−12𝑥 + 3𝑥2𝑓′(𝑥)

𝑎, 𝑏 [0.5,1]

With: 
11−12[0.5,1] + 3[0.5,1]2𝐹′([0.5,1]) =

= [−0.25,8]

Fc (x) = −0.703125+ [−0.25,8](x− 0.75)

−0.703125𝑓 0.75 =
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Interval Functions

Strategies to reduce overestimation

2020

Use centered forms extensions: Taylor Extension

Let f be a real function, continuous and n times differentiable in [a,b]

The Taylor extension of order n of f over [a,b] centered at c is:

𝐹𝑐
𝑛 𝑥 = ෍

𝑘=0

𝑛−1
𝑓 𝑘 𝑐

𝑘!
(𝑥 − 𝑐)𝑘+

𝐹 𝑛 [𝑎, 𝑏]

𝑛!
(𝑥 − 𝑐)𝑛

𝐹𝑐
1 𝑥 = Fc (x)

If n=1, Taylor extension is the Mean Value extension:
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Interval Functions

Strategies to reduce overestimation

2020

In general centered forms are tighter for small intervals and natural 

extensions are more precise for large intervals 

The natural extension has a linear convergence

The mean value extension has a quadratic convergence

The same ideas can be applied to multivariate functions:

Splitting boxes

Partial derivatives

Multivariate Taylor form


