
	 Constraint	Programming	 Exam	(Part	II)	-	13	January	2017	 1	–	1	
	

Constraint	Programming	
2016/2017	–	Exam	

Friday,	13	January	2017,	10:30	h	

Part	II–	Interval	Constraints	(1.5	h	–	open	book)	
	

1.	Interval	Arithmetic		
Consider	the	polynomial	function	expressed	in	the	standard	form	as:	𝑓 𝑥 = 𝑥! − 3𝑥! + 2𝑥	

1.1. Express	this	function	in:	
Horner’s	form:	𝑎! + 𝑥(𝑎! + 𝑥(𝑎! +⋯+ 𝑥(𝑎!!! + 𝑎!𝑥)))	
Factored	form:	(𝑥 − 𝑟!)(𝑥 − 𝑟!)⋯ (𝑥 − 𝑟!)	

1.2. Compute	the	natural	interval	evaluation	of	each	form	for	I=[-1,2].	
1.3. For	 each	 form	 choose	 a	 non-degenerated	 interval	 for	which	 the	 natural	 interval	 evaluation	

computes	the	exact	bounds	of	the	function.	

2.	Interval	Newton		
Consider	the	polynomial	of	the	previous	question:	𝑓 𝑥 = 𝑥! − 3𝑥! + 2𝑥	

2.1. Define	the	interval	Newton	function	for	the	polynomial.		
2.2. Define	 an	 algorithm	 that	 computes	 the	 exact	 bounds	 of	 the	 derivative	 of	 the	 polynomial	

function	for	any	I=[a,b]	with	a>1.	
2.3. Use	the	interval	Newton	method	to	prove	that	the	polynomial	has	at	least	one	root	in	[!

!
, !
!
].		

2.4. Can	you	prove	with	only	1	 iteration	of	 the	 interval	Newton	step	 that	 the	polynomial	has	no	
roots	in	[!

!
, !
!
]?	Justify.		

3.	Constraint	Propagation	
Consider	the	following	Continuous	Constraint	Satisfaction	Problem:	

variables:		 x	∈	[0,1]  

y	∈	[0,1]	
constraints:	 𝑥! + 3𝑥𝑦 = 1	 

𝑥 = 𝑦 + !
!
 	

3.1. Define	a	set	of	narrowing	functions	able	to	enforce	hull-consistency	on	the	original	constraints	
of	the	CCSP	(for	any	box	B	⊆	[0,1]!).	

3.2. Starting	with	the	original	domains	box	B	⊆	[0,1]!,	apply	the	above	narrowing	functions	up	to	a	
fixed-point.	What	is	the	box	obtained?	

3.3. Show	 the	 results	 that	 would	 be	 obtained	 during	 the	 execution	 of	 a	 branch-and-prune	
algorithm	with	the	pruning	step	based	on	the	above	narrowing	functions	and	a	branching	step	
that	splits	the	largest	variable	domain	in	its	midpoint.	Start	with	the	original	domains	box	B	⊆	
[0,1]!	and	 stop	 splitting	when	 the	width	of	 any	variable	domain	 is	 strictly	 smaller	 than	0.5.		
Stop	pruning	when	the	width	of	any	variable	domain	is	strictly	smaller	than	0.1.			


