
3 November 2015 Constraint Programming 1

Search and Optimisation

- Heuristic Search

• Variable and Value selection

• Static and Dynamic Heuristics

• User Defined Heuristics

• Advanced Search Techniques

3 November 2015 Constraint Programming 2

Complete Search

-  Algorithms that maintain some form of consistency, remove redundant values but,
not being complete, do not eliminate the need for search, except in the (few) cases
where i-consistency guarantees not only satisfiability of the problem but also a
backtrack free search. In general,

§  A satisfiable constraint may not be consistent (for some criterion); and

§  A consistent constraint network may not be satisfiable

-  All that is guaranteed by maintaining some type of consistency is that the initial
network and the consistent network are equivalent - solutions are not “lost” in the
reduced network, that despite having less redundant values, maintains all the
solutions of the former. Hence the need for search.

-  Complete search strategies usually organise the search space as a tree, where the
various branches down from its nodes represent assignment of values to variables.
As such, a tree leaf corresponds to a complete compound label (including all the
problem variables) – and traversing the tree to a constructive approach for finding
solutions.

3 November 2015 Constraint Programming 3

Complete Search

-  A depth first search in the tree, resorting to backtracking when a node corresponds
to a dead end, corresponds to an incremental completion of partial solutions until a
complete one is found.

-  Given the execution model of constraint programming (or any algorithm that
interleaves search with constraint propagation)

 the enumeration of the variables (labeling) determines the shape of the search tree,
since its nodes depend on the order in which variables are enumerated.

Solver<CP> cp();
... // declaration of variables
solve<cp> {
... // declaration of constraints
} using {
... // labelling of variables
}
... // report solution

3 November 2015 Constraint Programming 4

Complete Search

-  Take for example a problem with variables of array x with domains

x[1] in 1..2, x[2] in 1..3 and x[3] in 1..4.

1 2 3 4 1 2 3 4 1 2 3 4

1 2 3

1

1 2 3 4 1 2 3 4 1 2 3 4

1 2 3

2

3 November 2015 Constraint Programming 5

Complete Search

-  A depth first search is specified in Comet with the predefined function label, that can
be applied to all FD variables of the solver or to a more specific a set or array of
variables (in this case all variables are in array x, so both can be used)

-  Note: In this example we search for all solutions. Integer i counts the solutions
which are reported before closing the using part.

Integer i(0);
Solver<CP> cp();
var<CP>{int} x[1..3](cp,1..4);
solveall<cp>{
 cp.post(x[1] <= 2);
 cp.post(x[2] <= 3);
} using {
 label(cp); // or label(x);
 i := i+1;
 cout << " solution " << i << ": " << x << endl;
}

3 November 2015 Constraint Programming 6

Complete Search

-  In fact the label function performs two decisions:
§  Select a variable to label
§  Select the value used to assign to the variable

-  Such decisions are made explicit by means of the following equivalent specification
of labeling with the try command (and the function that returns a domain of a
variable)

function set{int} domainOf(var<CP>{int} x){
 int v1 = x.getMin();
 int v2 = x.getMax();
 set{int} dom = collect(v in v1..v2: x.memberOf(v))(v);
 return dom;
}

forall(i in x.getRange())
 tryall<cp>(v in domainOf(x[i]) cp.label(x[i],v);

3 November 2015 Constraint Programming 7

Complete Search

-  Labeling all FD variables of a solver is similar as shown below. Note that the
variable and value choices of function label are not arbitrary. In fact, this function
selects:
§  Variables: in increasing “declaration” order
§  Values: in increasing order:

-  Although these orderings are made by default in the select and try commands, they
are made explicit in the following specification:

// Solver<CP> sv();
…
// label(sv);
forall(i in sv.getIntVariables().getRange()) by (i)
 tryall<cp>(v in domainOf(sv.getVariable(i))) by (v)
 cp.label(sv.getVariable(i),v);

3 November 2015 Constraint Programming 8

Complete Search

-  The order in which variables are enumerated may have an important impact on the
efficiency of the tree search, since

§  The number of internal nodes is different, despite the same number of leaves,
or potential solutions, Π #Di.

§  Failures can be detected differently, favouring some orderings of the
enumeration.

§  Depending on the propagation used, different orderings may lead to different
pruning of the search tree.

-  The ordering of the domains has no direct influence on the search space,
although it may have great importance in finding the first solution.

3 November 2015 Constraint Programming 9

Complete Search

 label(x[1],v)
 propagation
 label(x[2],v),
 propagation,
 label(x[3],v)
 propagation,
.

of nodes = 32
(2 + 6 + 24)

1 2 3 4 1 2 3 4 1 2 3 4

1 2 3

1

1 2 3 4 1 2 3 4 1 2 3 4

1 2 3

2

3 November 2015 Constraint Programming 10

Complete Search

of nodes = 40
(4 + 12 + 24)

1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2

2 3 1 2 3 1 2 3 1 2 3 1

1 2 3 4

 label(x[3],v)
 propagation
 label(x[2],v),
 propagation,
 label(x[1],v)
 propagation,
.

3 November 2015 Constraint Programming 11

Complete Search

-  This is one of the reasons that explains the efficiency of the first-fail heuristic
available in Comet as function labelFF, applicable to a set or array x of variables

 ... or to all variables of the solver cp:

// labelFF(x); x is an array of FD variables
while(!bound(x)) {
 selectMin(i in x.getRange(): x[i].getSize() > 1)
 (x[i].getSize()){
 set{int} Dom = domainOf(x[i]);
 tryall<cp>(v in domainOf(x[i]) cp.label(x[i],v);
}}

// labelFF(cp); cp is a Solver<CP>
set{int} Vars = cp.getIntVariables().getRange();
while(!bound(cp.getIntVariables())) {
 selectMin(i in Vars: cp.getVariable(i).getSize() > 1)
 (cp.getVariable(i).getSize()){
 set{int} Dom = domainOf(cp.getVariable(i));
 tryall<cp>(v in Dom) cp.label(cp.getVariable(i),v);
}}

3 November 2015 Constraint Programming 12

Complete Search

-  More complex heuristics may be specified in Comet taking into account specific
information that is known about variables and their dependencies. In the example:

§  Variables wh1 are labeled 1;

§  The corresponding variables wh2 are labeled 1 as well; If one of the latter
assignments fails, it is backtracked to value 0;

§  If an assignement of wh1 to 1 fails (possibly after failing all possible assignments
of the corresponding wh2 variables), it backtracks to 0;

§  Variable if3 is only enumerated (starting with 1) after all variables wh1 and wh2;

§  Variables a and b (in this order) are only enumerated after all the other variables;

forall(i in 0..20) try<cp> {
 cp.post(wh1[i] == 1);
 forall(j in 0..30) try<cp>
 cp.post(wh2[i,j] == 1); | cp.post(wh2[i,j] == 0);
} | cp.post(wh1[i] == 0);
try<cp> cp.post(if3 == 1); | cp.post(if3 == 0);
label(a);
label(b);

3 November 2015 Constraint Programming 13

Heuristic Search

-  To control the efficiency of tree search one should in principle adopt appropriate
heuristics to select

•  The next variable to label

•  The value to assign to the selected variable

-  Since heuristics for value choice will not affect the size of the search tree to be
explored, particular attention will be paid to the heuristics for variable selection,
where two types of heuristics can be considered:

§  Static - the ordering of the variables is set up before starting the enumeration,
not taking into account the possible effects of propagation.

§  Dynamic - the selection of the variable is determined after analysis of the
problem that resulted from previous enumerations (and propagation).

3 November 2015 Constraint Programming 14

Static Heuristics

-  Static heuristics are based on some properties of the underlying constraint graphs,
namely their width.

-  Node width, given ordering O:

Given some total ordering, O, of the nodes of a graph, the width of a node N,
induced by ordering O is the number of lower order nodes that are adjacent to N.

-  Width of a graph G, induced by O:

Given some ordering, O, of the nodes of a graph, G, the width of G induced by
ordering O, is the maximum width of its nodes, given that ordering.

-  Width of a graph G:

The width of a graph G is the lowest width of the graph induced by any of its
orderings O.

3 November 2015 Constraint Programming 15

Static Heuristics

-  In the graph below, we may consider various orderings of its nodes, inducing
different widths.

-  The width of the graph is 3, as is, for example the width induced by ordering O1,

-  although order O2 induces a width of 6 on the graph).

2 3

5 6

1

7

4 1 2 3 4 5 6 7

1: 0 / { }
2: 1 / {1}1
3: 2 / {1,2}
4: 3 / {1,2,3}
5: 3 / {1,2,4}
6: 3 / {1,3,4}
7: 3 / {4,5,6}

4 5

2 3

6

1

7

1: 0 / { }
2: 1 / {1}
3: 1 / {1}
4: 1 / {2}
5: 2 / {3,4}
6: 4 / {2,3,4,5}
7: 6 / {1,2,3,4,5,6}

1 2 3 4 5 6 7

3 November 2015 Constraint Programming 16

Static Heuristics

-  Static heuristics are based on some properties of the underlying constraint graphs,
namely their width and bandwidth.

MWO Heuristics (Minimum Width Ordering):

 The Minimum Width Ordering heuristics suggests that the variables of a constraint
problem are chronological enumerated, in some ordering that leads to a minimal
width of the primal constraint graph.

-  This heuristic is “justified” by the relationship between graph (induced) width and
satisfiability, through the initial imposition of i-consistency (remind that i = 1, 2 or 3
correspond, respectively to node-, arc- and path-consistency).

-  Even if, given its computational cost, one cannot adopt values of i high enough to
guarantee backtrack free search, it is likely that low width inducing orderings will
lead to some acceptably low backtracking.

3 November 2015 Constraint Programming 17

Static Heuristics

Special cases:

Trees are graphs of width 1. Hence a
backtrack free search (even with no
propagation during search) is obtained after
imposing strong 2-consistency (i.e. arc-
consistency) and enumerating variables in an
width-1 inducing order:

(1,2,3,4,5,6,7,8,9) but also
(1,2,5,6,3,7,4,8,9), but beware of
(2,3,4,5,6,7,8,9,1).

In graphs of width i-1, backtrack free search
(with no propagation during search) is
obtained by imposing strong i-consistency and
enumerating variables in an width-i inducing
order. In the example (i=3, path-consistency)

(1,2,3,4,5,6,7,8,9), but also
(1,3,2,4,5,6,7,8,9), but not
(1,4,8,9,7,3,6,2,5).

1

5

3 2

7 6

4

8 9

1

5

3 2

7 6

4

8 9

3 November 2015 Constraint Programming 18

Static Heuristics

-  An approximation of the MWO heuristics is the MDO heuristics that avoids the
computation of ordering O leading to lowest constraint graph width.

MDO Heuristics (Maximum Degree Ordering):
 The Maximum Degree Ordering heuristics suggests that the variables of a constraint
problem are enumerated, by decreasing order of their degree in the constraint
graph.

-  This heuristic avoids computing an ordering from the outset, and computes the
number of adjacent neighbours of the nodes in the remaining graph, with a similar
algorithm to compute minimum width orderings, but

§  placing nodes with higher degrees in the beginning of the ordering; rather than

§  placing nodes with lower degrees in the end of the ordering.

3 November 2015 Constraint Programming 19

Static Heuristics

-  Both the MWO and the MDO heuristic tend to start the enumeration by those
variables with more variables adjacent in the graph, resulting in the early
detection of dead ends.

-  Having a common rational, MWO and MDO orderings are not necessarily
coincident.

Example:

-  In the graph shown, the two MDO orderings

 O1 = [4,1,5,6,2,3,7] , and

 O2 = [4,1,2,3,5,6,7]
 induce different widths (4 and 3, respectively).

2 3

5 6

1

7

4

3 November 2015 Constraint Programming 20

Static Heuristics

-  When assuming constraint propagation algorithms are interleaved with
enumeration, another property of the underlying graph can be exploited: cycle-
cut sets.

-  In fact, given the complexity of the algorithms to impose i-consistency, only
small values of i are usually considered. In particular, i=2 corresponds to arc-
consistency, usually a good trade of between cost of maintaining consistency
and search efficiency improvement.

-  In the worst case, backtracking is needed in (almost) all variables. However,
this is not always the case.

-  In particular, when the underlying graph is a tree, we have noticed that
backtrack free search is possible if (directional) arc-consistency is imposed.

-  This is the idea of a cycle-cut set – find a set of nodes that when removed cut
all cycles in the graph, i.e. convert the graph into a tree!

3 November 2015 Constraint Programming 21

Static Heuristics

Example:

-  In the graph shown, as soon as some of the variables are enumerated the
graph becomes a tree. Which variables?

CCS Heuristics (Cycle Cut Set Heuristic):
The Cycle Cut Set Heuristic heuristics suggests the variables of a lowest
cardinality cycle-cut set to be enumerated first, reducing the problem to a tree
shaped network.

B A

C
E

G
I

D

H

J K

F

M L

B A

C
E

G
I

D

H

J K

F

M L

3 November 2015 Constraint Programming 22

Static Heuristics

-  Unfortunately, there is no known polinomial algorithm to obtain cycle-cut sets
with lowest cardinality.

-  But a good guess is to start with highest degree nodes. In a way, the MDO
heuristic may hence lead somehow to a CCS heuristic.

-  Of course, this strategy assumes that arc-consistency is maintained interleaved
with enumeration. As such, as soon as a tree is reached, arc-consistency
automatically guarantees either

§  a solution is found with no backtracking (no extra computational work is
needed as soon as an arc-consistency tree is reached); or

§  unsatisfiability is proved, and backtracking is performed on the variables of
the cycle cut set alone.

-  Note: In some cases it may pay off to impose/maintain path consistency, if a
graph of induced width of two is likely to be found.

3 November 2015 Constraint Programming 23

Static Heuristics

-  In other cases, namely when the graph has components close to be
disconnected, a decomposition strategy may pay-off, i.e. selecting an order of
enumeration that decomposes a problem in smaller problems. In the example
of the figure, after enumerating some of variables in the “border” the problem is
decomposed into independent problems.

-  The rationale is of course to transform a problem with worst case complexity of
O(dn) into two problems with “half” the variables of complexity O(2 dn/2).

B A

C
E

G
I

D

H

J K

F

M L

B A

C
E

G
I

D

H

J K

F

M L

3 November 2015 Constraint Programming 24

Dynamic Heuristics

-  The basic principle followed by most dynamic variable selection heuristics can
be illustrated with the following placement problem:

-  Fill the large rectangle in the right with the 8 smaller rectangles (in the left).

-  A sensible heuristics will start by placing the larger rectangles first, and the
rationale might be explained as follows:

-  Larger rectangles are harder to place than the smaller ones, and have less
possible choices. If one starts with the smaller (and easy) rectangles, they
further restrict these choices, possibly making them impossible, thus inducing
some avoidable (?) backtracking.

3 November 2015 Constraint Programming 25

Dynamic Heuristics

-  This is the principle that dynamic variable select heuristics follow in general: the
first-fail principle.

-  When selecting the variable to enumerate next, try the one that is more
difficult, i.e. start with the variables more likely to fail (hence the name).

-  If the principle is simple, there are many possible ways of implementing it. As
usual, many apparently good ideas do not produce good results, so a relatively
small number of implementations is considered in practice.

-  They can be divided in three distinct groups:

§  Look-Present heuristics: the difficulty of the variable to be selected is
evaluated taking into account the current state of the search process;

§  Look-Back heuristics: they take into account past experience for the
selection of the most difficult variable;

§  Look-Ahead Heuristics: the difficulty of the variable is assessed taking
into account some probing of future states of the search.

3 November 2015 Constraint Programming 26

Dynamic Heuristics – Look Present

-  Look Present Heuristics.

-  Enumerating a variable is a simple task that is equally difficult for all variables.
The important issue here is the likelihood that the assignment is a correct one.

-  If there are many choices (as there are for the smaller rectangles in the
example), the likelihood of assigning a wrong value increases, and the
difficulty can thus be assessed from this number of choices.

-  If this assessment is to be based solely on the current state of the search, it
should consider features that are easy to measure, such as

§  The domain of the variables (its cardinality)

§  The number of constraints (degree) they participate in.

3 November 2015 Constraint Programming 27

Dynamic Heuristics – Look Present

Dom Heuristics: The domain of the variables (cardinality)

-  Take variables x1 / x2 with m1 / m2 values in their domains, and m2 > m1.
Intuitively, it is more difficult to assign values to x1, because there are less
choices available !

-  In the limit, if variable x1 has only one value in its domain, (m1 = 1), there is no
possible choice and the best thing to do is to immediately assign the value to
the variable.

-  Another way of seeing this choice (but from a value-selection perspective) is
the following:

§  On the one hand, the “chance” to assign a good value to x1 is higher than
that for x2.

§  On the other hand, if that value proves to be a bad one, a larger
proportion of the search space is eliminated.

-  This heuristics is also referred to as ff (e.g. in COMET and in SICStus Prolog)

3 November 2015 Constraint Programming 28

Dynamic Heuristics – Look Present

Deg Heuristics: The number of constraints (degree) of the variables

-  This heuristics is basically the Maximum Degree Ordering (MDO) heuristics,
but now the degree of the variables is assessed dynamically, after each
variable enumeration.

-  Clearly, the more constraints a variable is involved in, the more difficult it is to
assign a good value to it, since it has to satisfy a larger number of constraints.

-  In practice this heuristic is not used alone, but as a form of breaking ties (for
variables with domains of the same cardinality).

-  This heuristics is also referred to as c (e.g. in SICStus Prolog), namely when
associated with the Dom heuristics to break ties in this latter. The association is
referrred to as ffc heuristics. No support seems to be given in COMET.

3 November 2015 Constraint Programming 29

Dynamic Heuristics – Look Back

Look Back Heuristics.

-  These heuristics aim to learn the difficulty of the variables from past
experience in the search process.

-  Learning the difficulty of a variable, and adjusting it during search, has been
tried successfully in the past in two different directions:

§  To measure the difficulty of the constraints, through the number of failures
they induce during the search process - the more failures are detected,
the more difficult a constraint is considered. The difficulty of a variable is
then obtained indirectly from the difficulty of the constraints it belongs to.

§  To measure the difficulty of the variables, by the reduction of the search
space they induce. The more this search space has been reduced in the
past, the more difficult is considered the variable.

3 November 2015 Constraint Programming 30

Dynamic Heuristics – Look Back

Look Back Heuristics.

Wdeg Heuristics: The weighted degree of the variables

-  This heuristics is a variation of the Deg heuristics, and updates the weigths of
the constraints of the problems during search, taking into account constraint
propagation, as follows.

-  Every constraint is implemented through propagators, usually one for every
variable appearing in the constraint. For example, constraint C: a+b >= c is
implemented with 3 propagators (for bounds consistency)

§  P1: max(c) ← max(a) + max(b)
§  P2: min(a) ← min(c) - max(b)
§  P3: min(b) ← min(c) - max(a)

-  Propagators may fail. For example, if propagator P1 makes max(c) < min(c),
not only the domain of variable c becomes empty, but also a failure is
registered for propagator P1.

-  Failures of any propagator are assigned to the corresponding constraints.

3 November 2015 Constraint Programming 31

Dynamic Heuristics – Look Back

Wdeg Heuristics: The weighted degree of the variables

-  The Wdeg heuristics is thus implemented as follows:

-  All constraints of the problem start with weight w = 1

-  Whenever a propagator leads to a failure, the weight of the corresponding
constraint is increased by 1 (w = w +1).

-  Every variable x, still to enumerate, is assigned a weighted degree, Wdeg,
which is the sum of the weights of all the constraints it participates in, that are
still n-ary (n > 1) at that state of the search (it is assumed that unary
constraints are easily checked and do not influence this counting scheme).

-  For example if a+b > c and a and b are fixed, then the domain of c is updated
and the constraint is not considered any longer (for variable c).

-  At each enumeration step, the variable selected is that with highest Wdeg.

3 November 2015 Constraint Programming 32

Dynamic Heuristics – Look Back

Dom/Wdeg Heuristics

-  Similarly to the Deg, also the Wdeg hweuristics can be combined with the
Dom (cardinality of the domain) heuristics.

-  The most successful combination is the Dom/Wdeg heuristics, that takes into
account that a variable is the more difficult to enumerate

§  the lowest its Dom is;

§  the highest Wdeg is.

-  Hence, the Dom/Wdeg heuristics selects for enumeration the variable with the
lowest Dom / Wdeg ratio.

3 November 2015 Constraint Programming 33

Dynamic Heuristics – Look Back

Impact Heuristics

-  A different type of heuristics attempts to assign the degree of difficulty to a
variable by the impact it had in previous enumerations. The most successful
heuristics measures the impact as the reduction of the search space when
an enumeration is made, under the assumption that difficult variables will
reduce more the possibilities to the other variables.

-  A simple measure (upper bound approximation) of the search space is the
product of the cardinality of the domains of the variables still not enumerated.

-  An enumeration e (i.e. where some value v is assigned to variable x) has an
impact i(x,e) measured by the relative reduction of the search space.

-  Specifically, denoting by Sa(e) (resp. Sb(e)) the size of the search space after
(resp. before) the enumeration (considering only the other variables) the
impact is measured as

i(x,e) = (Sb(e) – Sa(e)) / Sb(e) = 1 – Sa(e)/Sb(e)

3 November 2015 Constraint Programming 34

Dynamic Heuristics – Look Back

-  The total impact factor of a variable is the average of all the impacts of all
previous enumerations of that variable, i.e.

I(x) = averagee(i(x,e))

-  For example, assume that the problem has variables x1 to x6, all with 5 values
in their domain. If variable x5 is enumerated with some value in its domain and
the size of the variables becomes [3,4,1,5,1,6] then the impact of this
enumeration on X5 is (note: the contribution of variable x5 to the search space
is not considered)

1- (3*4*1*5*6)/(6*6*6*6*6) = 1- 360/65 = 1-0.04(629) =0.95(370)

-  Of course the highest this value (that ranges in [0,1]) the largest the impact is,
which justifies the following

Impact Heuristics

-  The impact heuristics selects for enumeration the variable with the highest
impact factor I(x).

3 November 2015 Constraint Programming 35

Dynamic Heuristics – Look Ahead

Look Ahead heuristics

-  An heuristics that we have tested successfully in some problems (e.g. latin
squares) selects a variable assessing the effect of its possible assignments
(not done yet).

-  This type of look-ahead consistency, named singleton arc-consistency (or
shaving), was already previously proposed as a consistency criterion, but it
was not considered efficient.

-  We noticed however that its adoption, not to merely prune values from the
domains of the variables but also as a heuristics to take into account the
impact of each of the tried values, could be of some interest.

1 , 2

1 , 2 1 , 2

≠

≠

≠

A

B C

-  Although arc-consistency does not detect
unsatisfiability of the network shown, this
would be detected if each of the values of a
variable is “tried”, as a form of look-ahead.

3 November 2015 Constraint Programming 36

Dynamic Heuristics – Look Ahead

Look Ahead heuristics

-  For each variable x under consideration, a look-ahead is made, assigning
each of the values v of the variable domain and assessing its impact, i(x,v)
defined as before (the ratio between the reduction of the search space and
the search space before the assignment).

-  The impact of each variable x is obtained as the averave over the different
values

 I(x) = averagee(i(x,e))

SAC-LA Heuristics

-  The SAC-LA heuristics selects for enumeration the variable with the highest
impact factor I(x) obtained after imposing Singleton Arc Consistency.

b

a

b

ab

S
S

S
SSvxi −=

−
= 1),(

3 November 2015 Constraint Programming 37

Dynamic Heuristics – Look Ahead

Look Ahead heuristics

-  In practice this heuristics has provided the best results in the latin-squares
problem (hard instances of size 35, 1/3 of positions filled in).

-  Moreover it was adapted, to breack ties in the Dom heuristics. Several
variables were quickly restricted to 2 values and we used the heuristics only
on these values.

-  Moreover, full arc consistency is not used. Instead, we used a restricted form
of arc-consistency that does not reach a fix point in reduction but only makes
a round robin visit to all the constraint propagators (forward-checking). It does
not detect possible inconsistent values as SAC does, but is much faster to get
approximate values of Sb.

-  In general all heuristics require some tuning, and this technique is more of an
art than a science, but is often the best (only?) way of solving a problem
(namely its hard instances).

3 November 2015 Constraint Programming 38

Dynamic Heuristics

-  An example of comparison of heuristics - 35 latin square completion

3 November 2015 Constraint Programming 39

Different Branching Strategies

-  So far it has been assumed n-way branching: when a variable is selected for
labelling and has several values in its domain all these values are tried in
some order.

-  However, this is often not the most efficient way of organizing choice points.
At least two other alternatives are quite common in practice: 2-way branching
and domain splitting.

-  2-way branching simply imposes that a variables either takes or not some
selected value.

X = ai X ≠ ai

X

a1

a2 ak-1

ak

X

3 November 2015 Constraint Programming 40

Different Branching Strategies

-  The main advantage of this method is to prevent heuristics to be stuck at
specific variables. Once a value is not considered convenient for a variable, this
should not force another value for the same variable to be selected. It might be
better to select another variable/value pair as shown below

-  Example: X in {1, 6, 8, 9} , Y in {2, 3, 4, 7, 9} , X =< Y, p(X,Y)

X = 1

X in {6,8,9}
Y in {7,9}

X
X in {1,6,8,9}
Y in {2,3,4,7,9} X ≠ 1

 Y ≠ 2
 Y ≠ 3

 Y ≠ 4

Y

Y = 7

X in {6,8,9}
Y in {9}

Y ≠ 7
 Y = 9

3 November 2015 Constraint Programming 41

Different Branching Strategies

-  Domain splitting does not impose any specific value for the selected variable,
rather it splits the domain, usually in two halves.

-  This technique allows that several values are discarded in a single step, as
shown

-  This main use of this technique is in optimisation problems using a branch &
bound strategy. Once a good solution has been found in one branch, we are
interested in eliminating all branches that do not lead to a better solution.
Domain splitting often makes such discarding more efficient.

x

x <= m x > m

3 November 2015 Constraint Programming 42

Different Branching Strategies

-  The changes in the codes shown before are straightforward. Instead of trying all
values as done in of n-way branching,

-  2-way branching replaces the try command with an alternative such as

-  3-way branching, as well as domain splitting may be specified as below
(although the choice of v should be improved)

while(!bound(x)) {
 selectMin(i in x.getRange(): x[i].getSize() > 1)
 (x[i].getSize()){
 set{int} Dom = domainOf(x[i]);
 tryall<cp>(v in Dom) cp.label(x[i],v);
 }
}

try<cp>(v in Dom) {cp.label(x[i],v) | cp.diff(x[i],v)}

try<cp>(v in Dom) {cp.post(x[i] <= v) | cp.post(x[i]> v) }

try<cp>(v in Dom)
 {cp.lthen(x[i],v) | cp.label(x[i],v) | cp.gthen(x[i],v)}

-  In some cases the user has some knowledge about the variables and values
to select and thus not rely on general purpose heuristics.

-  For example, in the n-queens problem, a very successful heuristics selects
variables and values from the “centre” of the n×n board, in addition to
selecting the variable with least domain size (ff). Once selected the variable,
the value selected should also be near the middle of its domain.

-  The rationale is simple: by propagation (say node-consistency)

•  whereas queen in a corner only eliminates O(2n) values from the domains
of the other variables

•  a queen placed in the center of the board eliminates O(3n) values from the
domains of the other variables

3 November 2015 Constraint Programming 43

User-Defined Heuristics

3 November 2015 Constraint Programming 44

User-Defined Heuristics

-  Such heuristics can be easily specified in COMET as shown below:

-  In fact, this heuristics makes it possible to solve, almost without backtracking,
very large instances of the n-queens problem (e.g. n ≈ 5000)

range R = 1..n;
var<CP>{int} q[R](s,R);
...
while(! bound(q)){
 selectMin(i in R:!q[i].bound())(x[i].getSize(),abs(i-n/2))
 selectMin(v in domainOf(q[i]) (abs(v-n/2))
 try<s> s.label(q[i],v); | s.diff(q[i],v);
}

3 November 2015 Constraint Programming 45

Incomplete Search Strategies

-  Constraint Programming uses, by default, depth first search with backtracking in
the labelling phase.

-  Despite being “interleaved” with constraint propagation, and the use of
heuristics, the efficiency of search depends critically on the first choices done,
namely the values assigned to the first variables selected.

-  If the first variable has 2 values, and the wrong one is selected, half the search
space is computed and visited uselessly!

-  Hence, alternatives to pure depth first search have been proposed so as to allow
the search to focus on the most promising parts of the search space, at the
potential cost of becoming incomplete, namely

•  Restarts;

•  Limited Discrepancy;

•  Iterative Broadening;

•  Depth-Bounded Discrepancy; and

•  Depth - Bound (Best First)

3 November 2015 Constraint Programming 46

Incomplete Search Strategies

Restarts

-  If bad values are selected in the first choices, it will be very difficult to backtrack
them, since the space that needs to be searched before such backtracking is of
the order of magnitude of the whole search space of the program.

-  In this case, it is more convenient to start a new search. Of course, in the new
execution the choices must not be the same (otherwise the failures would be
repeated).

-  Stochastic selections could use the command select() rather than selectMin()
or SelectMax(), which implements a random choice.

-  To abort the search before a solution is found the following methods of the
Solver<CP> class can be used, to specify conditions to abort search:

•  void limitFailures(int f) : sets f as the maximum number of failures

•  void limitTime(int s): sets t as the maximum number of seconds

3 November 2015 Constraint Programming 47

Incomplete Search Strategies

Iterative broadening,

-  In iterative broadening a limit b is assigned to the number of children of a node
that are visited , i.e. to the number of values that may be chosen for a variable.

1 2 3 4 1 2 3 4 1 2 3 4

1 2 3

1

-  If this value is exceeded, the node
and its successors are not explored
any further.

•  In the example, assuming that b=2,
the search space that is pruned is
shadowed.

-  To guarantee completeness, if the search fails for a given b, this value is iteratively
increased, hence the iterative broadening qualification.

3 November 2015 Constraint Programming 48

Incomplete Search Strategies

Limited Discrepancy

-  Limited discrepancy assumes that the value choice heuristic may only fail,
globally, a (small) number of times. Hence, rather than limiting at each variable
the number of bad choices it does so for all variables.

1 2 3 4 1 2 3 4 1 2 3 4

1 2 3

1

-  Again, if the search fails, d may be incremented and the search space is
increasingly incremented.

-  Comet implements this strategy with method:
- void setSearchController(BDSController(cp))
(cf. AbstractSearchController class, for more details)

-  It sets a limit d, to the number of
times that the heuristic is not taken
into account.

-  In the example, assuming heuristic
options at the left and d=2 the
search space prunned is shadowed.

3 November 2015 Constraint Programming 49

Incomplete Search Strategies

Depth-Bound Discrepancy

-  This type of discrepancy search, allows any number of bad choices, but only to
a limited depth, d. Once this depth is obtained, no backtracking is accepted. In
the figure the allowed depth is 2 (i.e. 2 enumerations)

-  Again, if the search fails, d may be incremented and the search space is
increasingly incremented.

-  In the 1st iteration, no backtrack is accepted

-  The 2nd iteration backtracks to the 1st choice
point (1st enumeration)

-  The 3rd / 4th iterations backtrack to the 2/3
choice point (1st enumeration)

-  No further backtracking is allowed.

3 November 2015 Constraint Programming 50

Incomplete Search Strategies

Depth - Bound (Best First)

-  A different implementation of depth bounded search also takes into account that
heuristics are more precise at higher depths, but adopts a best first approach.

-  Again, if the search fails, d may be incremented and the search space is
increasingly incremented.

-  In the 1st phase all nodes of depth d are
generated.

-  They are sorted by their heuristic value.

-  In the second phase, the search proceeds
with no backtracking, starting from each of
the nodes of depth d.

1 2 4 3

3 November 2015 Constraint Programming 51

Intelligent Backtracking

-  When the enumeration of a variable fails, backtracking is usually performed on
the variable that immediately preceded it.

-  This is the so-called chronological backtracking.

-  However, it is possible that this last variable is not to blame for the failure, in
which case, chronological backtracking will only re-discover the same failures.

-  Various techniques for intelligent backtracking, or dependency directed search,
aim at identifying the causes of the failure and backtrack directly to the first
variable that participates in the failure.

-  Some variants of intelligent backtracking are:

o  Backjumping ;

o  Backchecking ; and

o  Backmarking .

3 November 2015 Constraint Programming 52

Intelligent Backtracking

Backjumping

-  Failing the labeling of a variable, all variables that cause the failure of each of the
values are analysed, and the “highest” of the “least” variables is backtracked.

1 3 4 2 5 4 5 3 5 1 2 3

-  In the example shown, analysis of why variable
Q6, could not be labeled, leads to the
conclusion that ...

-  All possible positions are prevented by queen
Q4 or some earlier queen.

-  Hence Q4 is the “last of the prior“ (max-min)
variables involved in the failure of Q6.

-  Hence backtracking, should be made to Q4,
not Q5. The assignment of values 5,6,7 or 8 to
Q5, would simply lead to new failures!

3 November 2015 Constraint Programming 53

Intelligent Backtracking

Backchecking and Backmarking

-  These techniques may be useful when the testing of constraints on different
variables is very costly. The key idea is to memorise previous conflicts, in order
to avoid repeating them.

§  In backchecking, only the assignments that caused conflicts are
memorised.

§  In backmarking the assignments that did not cause conflicts are also
memorised.

-  The use of these techniques with constraint propagation is usually not very
effective (with the important exception of SAT solvers, with nogood clause
learning), since propagation anticipates the conflicts, somehow avoiding
irrelevant backtracking.

3 November 2015 Constraint Programming 54

Intelligent Backtracking

SAT Solvers

-  Among all possible finite domains, the Booleans is a specially interesting case,
where all variables take values 0/1.

-  In Computer Science and Engineering the importance of this domain is obvious:
ultimately, all programs are compiled into machine code, i.e. to specifications
coded in bits, to be handled by some processor.

-  More pragmatically, a vast number of problems may be naturally specified
through a set of Boolean constraints, coded in a variety of forms (e.g. ASP).

-  Among these forms, a quite useful one is the clausal form, which corresponds to
the Conjunctive Normal Form (CNF) of any Boolean function. For example,

 c1: ¬x1 ∨ x2

-  In such cases, Boolean SATisfiability is often referred to as SAT.

3 November 2015 Constraint Programming 55

Intelligent Backtracking

SAT Solvers

-  Advanced SAT solvers use techniques common to other Finite Domains solvers,
namely

•  Boolean constraint propagation (BCP)

•  Heuristics to select the next variable and value to select, so that search is
guided towards most promising regions of the search space.

-  The specificity of SAT, enables specialised solvers to use additional advanced
techniques, not commonly used in more general FD solvers, namely

•  Diagnosis of failure

•  Non-chronological backtracking

•  Learning of “nogood” clauses

3 November 2015 Constraint Programming 56

Intelligent Backtracking

-  To illustrate these techniques, we should consider the assignment of values to
variables are made. Two different situations occur:

•  Some assignments are explicit decisions made by the solver, selecting the
variable and the value.

•  Other assignments are due to propagation on the former.

Example: Take the following labeling on these 3 clauses

 c1:(¬x1 ∨ x2)

 c2:(¬x2 ∨ x3)

 c3:(¬x1 ∨ ¬x4 ∨ x5)

1.  A first decision (at level 1) makes x1 = 1

2.  Propagation enforces x2 = 1 and x3 = 1

3.  A second decision (at level 2) makes x5 = 0

4.  Propagation enforces x4 = 0

x1=1@1

x5=0@2

x2=1@1

c1

c3 x4=0@2
c3

x3=1@1
c2

3 November 2015 Constraint Programming 57

Intelligent Backtracking

-  By maintaining such graph it is easy to detect the real causes of the failures, as
illustrated in the graph below.

-  Clearly, the conflict has been caused by assignments

-  x1=1, x9=0, x10=0 and x11 = 0,

-  although it was detected in clause c6, envolving variables x4 and x5.

c1:(¬x1 ∨ x2)
c2:(¬x1 ∨ x3 ∨ x9)
c3:(¬x2 ∨ ¬x3 ∨ x4)
c4:(¬x4 ∨ x5 ∨ x10)
c5:(¬x4 ∨ x6 ∨ x11)
c6:(¬x5 ∨ ¬x6)
c7:(x1 ∨ x7 ∨ ¬x12)
c8:(x1 ∨ x8)
c9:(¬x7 ∨ ¬x8 ∨ ¬x13)
...

x1=1@6

x10=0@2

x11=0@3 x9=0@1

x2=1@6

c1

c2
x3=1@6

c2

x4=1@6
c3

c3

x5=1@6 c4
c4

x6=1@6
c5

c5

c6

c6

c1:(¬x1 ∨ x2)
c2:(¬x1 ∨ x3 ∨ x9)
c3:(¬x2 ∨ ¬x3 ∨ x4)
c4:(¬x4 ∨ x5 ∨ x10)
c5:(¬x4 ∨ x6 ∨ x11)
c6:(¬x5 ∨ ¬x6)
c7:(x1 ∨ x7 ∨ ¬x12)
c8:(x1 ∨ x8)
c9:(¬x7 ∨ ¬x8 ∨ ¬x13)
...

c1:(¬x1 ∨ x2)
c2:(¬x1 ∨ x3 ∨ x9)
c3:(¬x2 ∨ ¬x3 ∨ x4)
c4:(¬x4 ∨ x5 ∨ x10)
c5:(¬x4 ∨ x6 ∨ x11)
c6:(¬x5 ∨ ¬x6)
c7:(x1 ∨ x7 ∨ ¬x12)
c8:(x1 ∨ x8)
c9:(¬x7 ∨ ¬x8 ∨ ¬x13)
...

c1:(¬x1 ∨ x2)
c2:(¬x1 ∨ x3 ∨ x9)
c3:(¬x2 ∨ ¬x3 ∨ x4)
c4:(¬x4 ∨ x5 ∨ x10)
c5:(¬x4 ∨ x6 ∨ x11)
c6:(¬x5 ∨ ¬x6)
c7:(x1 ∨ x7 ∨ ¬x12)
c8:(x1 ∨ x8)
c9:(¬x7 ∨ ¬x8 ∨ ¬x13)
...

3 November 2015 Constraint Programming 58

Intelligent Backtracking

-  Since, the conflict has been caused by the assignments

x1=1, x9=0, x10=0 and x11 = 0,

the no-good clause below prevents repetition of this impossible assignment
 c0:(¬x1 ∨ x9 ∨ x10 ∨ x11)

c1:(¬x1 ∨ x2)
c2:(¬x1 ∨ x3 ∨ x9)
c3:(¬x2 ∨ ¬x3 ∨ x4)
c4:(¬x4 ∨ x5 ∨ x10)
c5:(¬x4 ∨ x6 ∨ x11)
c6:(¬x5 ∨ ¬x6)
c7:(x1 ∨ x7 ∨ ¬x12)
c8:(x1 ∨ x8)
c9:(¬x7 ∨ ¬x8 ∨ ¬x13)
...

In fact, one may notice that this clause could have
been obtained through resolution on clauses

c1 & c3:(¬x1 ∨ ¬x3 ∨ x4)
 & c4:(¬x1 ∨ ¬x3 ∨ x5 ∨ x10)
 & c6:(¬x1 ∨ ¬x3 ∨ ¬x6 ∨ x10)
 & c5:(¬x1 ∨ ¬x3 ∨ ¬x4 ∨ x10 ∨ x11)
 & c3:(¬x1 ∨ ¬x2 ∨ ¬x3 ∨ x10 ∨ x11)
 & c1:(¬x1 ∨ ¬x3 ∨ x10 ∨ x11)
 & c2:(¬x1 ∨ x9 ∨ x10 ∨ x11)

-  but this no-good learning technique aims at only learn useful no-good clauses, i.e. those
that were “found” at run time.

3 November 2015 Constraint Programming 59

Intelligent Backtracking

-  Not all learned clauses are useful. SAT solvers are usually further parameterised
in order to determine which learned clauses are to be maintained (e.g. discard
long clauses, clauses not used for a long time, ...).

-  The overhead for carrying on with the analysis for non chronological backtracking
might not pay off (which may depend on the heuristics used for variable/value
selection). Parameterisation may help, but tuning all these parameters may be
very difficult, and differ considerably for aparently similar problems.

-  Current solvers may handle benchmark instances with tens of millions of clauses
on around one million variables (not random instances). However,

-  These numbers are misleading. Much less variables and constraints are
required if problems are modelled with FD constraints.

-  Processing nogoods is simply learning a structured model that was destroyed
when encoding the problem into the “poorly expressive ” SAT clauses.

-  Despite these criticisms, SAT solving is quite competitive with FD solvers, and
offers possibilities for hybridization with them. Most excitingly, SAT solvers have
been used quite successfully to implement FD propagation and even global
constraints (lazy clause generation approach).

