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Search and Optimisation 

-  An overview 

• Algorithms to enforce Node- and Arc-consistency 

• Non-Binary Networks 

• Consistency and Satisfiability 

• Bounds-Consistency  and Generalised Arc-Consistency 
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Enforcing Node-Consistency 

Definition (Node Consistency): 

 A constraint satisfaction problem is node-consistent if no value on the 
domain of its variables violates the unary constraints. 

Enforcing node consistency: Algorithm NC-1 

-  This can be enforced by the very simple algorithm shown below:  

procedure NC-1(V, D, C); 
   for x in V 
      for v in Dx do 
         for Cx in {C: Vars(Cx) = {x}} do 
            if not satisfy(x-v, Cx) then 
              Dx <- Dx \ {v} 
         end for 
      end for 
   end for 
end procedure 
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Enforcing Node-Consistency 

Space Complexity of NC-1: O(nd). 

-  Assuming n variables in the problem, each with d values in its domain, and 
assuming that the variable’s domains are represented by extension, a 
space nd is required to keep explicitely the domains of the variables. 

-  Algorithm NC-1 does not require additional space, so its space complexity is  
O(nd).  

Time Complexity of NC-1: O(nd). 

-  Assuming n variables in the problem, each with d values in its domain, and 
taking into account that each value is evaluated one single time, it is easy to 
conclude that  algorithm NC-1 has time complexity O(nd). 

The low complexity, both temporal and spatial, of algorithm NC-1, makes it 
suitable to be used in virtual all situations by a solver, despite the low pruning 
power of node-consistency. 
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Enforcing Arc-Consistency: AC-1 

Definition (Arc Consistency): 
A constraint satisfaction problem is arc-consistent if it is node-consistent and 
•  For every label xi-vi of every variable xi, and for all constraints Cij, defined over 

variables xi and xj, there must exist a value vj that supports vi. 

Enforcing arc-consistency: Algorithm AC-1 
-  The following simple (and inefficient) algorithm enforces arc-consistency: 

 

 

 

-  Note: for any constraint cij two directed arcs, aij e aji, are considered. 

procedure AC-1(V, D, C); 
   NC-1(V,D,C);  % node consistency 
   Q = {aij | cij ∈ C ∨ cji ∈ C }; % see note  
   repeat 
     changed <- false; 
     for aij in Q do 
       changed <- changed or revise_dom(aij,V,D,C) 
     end for 
   until not change 
end procedure 
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Enforcing Arc-Consistency: AC-1 

 
Revise-Domain 

-  Algorithm AC-1 (and others) uses predicate revise-domain on some arc aij, 
that succeeds if some value is removed from the domain of variable xi (a side-
effect of the predicate). 

 

 

predicate revise_dom(aij,V,D,C): Boolean; 
   success <- false; 
   for v in dom(xi) do  
      if  ¬ ∃vj in dom(xj): satisfies({xi-v,xj-vj},cij) then 
         dom(xi) <- dom(xi) \ {v}; 
         success <- true; 
      end if 
   end for 
   revise_dom <- success; 
end predicate 
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Enforcing Arc-Consistency: AC-1 

 
Space Complexity of AC-1: O(ad2) 

-  AC-1 must maintain a queue Q, with maximum size 2a. Hence the inherent 
spacial complexity of AC-1 is O(a). 

-  To this space, one has to add the space required to represent the domains 
O(nd) and the constraints of the problem. Assuming a constraints and d 
values in each variable domain the space required is O(ad2), and a total 
space requirement of  

O(nd + ad2) 

 which dominates O(a). 

-  For “dense” constraint networks”, a ≈ n2/2. This is then the dominant term, 
and the space complexity becomes 

O(ad2) = O(n2d2)  
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Enforcing Arc-Consistency: AC-1 

 
Time Complexity of AC-1: O(nad3) 

-  Assuming n variables in the problem, each with d values in its domain, and 
a total of a arcs, in the worst case, predicate revise_dom, checks d2 pairs of 
values. 

-  The number of arcs aij in queue Q is 2a (2 directed arcs aij and aji are 
considered for each constraint Cij). For each value removed from one 
domain, revise_dom is called 2a times. 

-  In the worst case, only one value from one variable is removed in each 
cycle, and the cycle is executed nd times. 

-  Therefore, the worst-case time complexity of  AC-1 is O( d2 *2a*nd), i.e.  

O(nad3)  
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Enforcing Arc-Consistency: AC-3 

Enforcing node consistency: Algorithm AC-3 

-  Whenever a value vi is removed from the domain of some xi, all arcs are 
reexamined. However, only the arcs aki (for k ≠ i§) should be reexamined.  

-  This is because the removal of vi may eliminate the support from some value vk of 
some variable xk for which there is a constraint cki (or cik).  

-  Such inefficiency of AC-1 is avoided in AC-3 below 

procedure AC-3(V, D, C); 
   NC-1(V,D,C);  % node consistency 
   Q = {aij | cij ∈ C ∨ cji ∈ C }; 
   while Q ≠ ∅ do 
      Q = Q \ {aij}   % removes an element from Q  
      if revise_dom(aij,V,D,C) then   % revised xi 
         Q = Q ∪ {aki | (cik ∈ C ∨ cki ∈ C )∧  k ≠ i} 
      end if 
   end while 
end procedure 
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Enforcing Arc-Consistency: AC-3 

 
Space Complexity of AC-3: O(ad2) 

-  AC-3 has the same requirements than AC-1, and the same worst-case 
space complexity of O(ad2) ≈ O(n2d2), due to the representation of 
constraints by extension. 

Time Complexity of AC-3: O(ad3) 

-  Each arc aki is only added to Q when some value vi is removed from the 
domain of xi.   

-  In total, each of the 2a arcs may be added to Q (and removed from Q) d 
times. 

-  Every time that an arc is removed, predicate revise_dom is called, to check 
at most d2 pairs of values. 

-  All things considered, and in contrast with AC-1, with temporal complexity 
O(nad3), the time complexity of AC-3, in the worst case, is O(2ad * d2), i.e.  

O(ad3) 
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Enforcing Arc-Consistency: AC-4 

Inefficiency of AC-3 

-  Every time a value vi is removed from the domain of some variable xi, all arcs 
aki (k ≠ i) leading to that variable are reexamined. 

-  Nevertheless, only some of these arcs should be examined. 

-  Although the removal of vi may eliminate one support for some value vk of 
another variable xk (given constraint cki), other values in the domain of xi may 
support the pair  xk-vk! 

This idea is exploited in algorithm AC-4, that uses a number of new data-structures 
to count supporting values  

§  Counters: For counting support values of label {xi-vi} in xj 

§  Suporting Sets: That explicitly enumerate the labels {xj-vj} that are 
supported by label {xi-vi}, w.r.t. any constraint cij. 

§  List: Queue of removed labels to be examined (similar to Q in AC-3) 

§  Matrix M: Maintains information on whether a label {xi-vi} is still present. 
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Enforcing Arc-Consistency: AC-4 

AC-4 Counters 

-  For example, in the 4 queens problem, the counters that account for the support 
of value q1= 2 are initialised as follows 

§  c(2,q1,q2) = 1  % q2-4 does not attack q1-1 

§  c(2,q1,q3) = 2  % q3-1 and q3-3 do not attack q1-1 

§  c(2,q1,q4) = 3  % q4-1,q4-3 and q4-4 do not attack q1 

 AC-4 Supporting Sets 

-  To update the counters when a value is eliminated, it is useful to maintain the 
set of Variable-Value pairs that are supported by each value of a variable. 

-  AC-4 thus maintain for each Value-Variable pair the set of all Variable-Value 
pairs supported by the former pair. 

•  sup(1,q1) = [q2-2, q2-3, q3-2, q3-4, q4-2, q4-3] 
•  sup(2,q1) = [q2-4, q3-1, q3-3, q4-1, q4-3, q4-4] 
•  sup(3,q1) = [q2-1, q3-2, q3-4, q4-1, q4-2, q4-4] 
•  sup(4,q1) = [q2-1, q2-2, q3-1, q3-3, q4-2, q4-3] 
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Enforcing Arc-Consistency: AC-4 

Algorithm AC-4 (Overall Functioning) AC-4 is composed of two phases:  

a)  initialisation, which is executed only once; and  

b)   propagation, executed after the first phase, and after each enumeration step. 

procedure initialise_AC-4(V,D,C); 
   M <- 1; sup <- ∅; List = ∅; 
   for cij in C do 

  for vi in dom(xi) do 
     ct <- 0;  
     for vj in dom(xj) do 
        if satisfies({xi-vi, xj-vj}, cij) then 
           ct <- ct+1; sup(vj,xj)<- sup(vj,xx) ∪ {xi-vi} 
         end if 
     endfor 
    if ct = 0 then M[xi,vi] <- 0; List <- List ∪ {xi-vi};  
                   dom(xi) <- dom(xi)\{vi}  
    else c(vi, xi, xj) <- ct; 
    end if 
  end for 

  end for 
end procedure 
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Enforcing Arc-Consistency: AC-4 

Algorithm AC-4 (propagation phase) 

procedure propagate_AC-4(List,V,D,R); 
while List ≠ ∅ do 
   List <- List\{xi-vi} % remove element from List 
   for xj-vj in sup(vi,xi) do 

   c(vj,xj,xi) <- c(vj,xj,xi) - 1; 
   if c(vj,xj,xi) = 0 ∧ M[xj,vj] = 1 then 
      List = List ∪ {xj-vj}; 
      M[xj,vj] <- 0; 
      dom(xj) <- dom(xj) \ {vj}  
   end if 
end for 

 end while 
end procedure 
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Enforcing Arc-Consistency: AC-4 

 
Space Complexity of AC-4: O(ad2) 

-  As a whole algorithm  AC-4 maintains 

§  Counters: As discussed, a total of 2ad 

§  Suporting Sets: In the worst case, for each constraint cij, each of the d xi-vi 
pairs supports d values vj from xj (and vice-versa). The space to maintain the 
supporting sets is thus  O(ad2). 

§  List: Contains at most 2a arcs 

§  Matrix M: Maintains nd Boolean values. 

-  The space required to maintain the supporting sets dominates. Compared with 
AC-3, where a space of size O(a) was required to maintain the queue, AC-4 has a 
much worse space complexity of  O(ad2) 
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Enforcing Arc-Consistency: AC-4 

 
Time Complexity of AC-4: O(ad2) 

-  Analysing the cycles executed in the procedure initialise_AC-4,  
   for cij in C do 
      for vi in dom(xi) do 
       for vj in dom(xj) do 

and assuming that the number of constraints (arcs) is a and the variables have all d 
values in their domains, the inner cycle of the procedure is executed 2ad2 times, which 
sets the time complexity of the initialisation phase to O(ad2).  

-  In the inner cycle of procedure propagate_AC-4 a counter for pair xj-vj is decremented 

   c(vj,xj,xi) <- c(vj,xj,xi) - 1  

Since there are 2a arcs and each variable has d values in its domain, there are 2ad 
counters. Each counter is initialised at most to d, as each pair xj-vj may only have d 
supporting values in the domain of another variable  xi.  

Hence, the inner cycle is executed at most 2ad2 times, which determines the time 
complexity of the propagation phase of  AC-4 to be O(ad2) 
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Enforcing Arc-Consistency: AC-4 

The asymptotic complexity of AC-4, cannot be improved by any algorithm!  

-  To check whether a network is arc consistent it is necessary to test, for each 
constraint Cij, that the d pairs Xi-vi have support in Xj, for which d tests might 
be required. Since each of the a constraints is considered twice, then 2ad2 
tests are required, with assymptotic complexity O(ad2) similar to that of AC-4. 

-  However, one should bear in mind that the worst case complexity is 
asymptotic. The data structures of AC-4, namely the counters that enable 
improving the support detection are too demanding. The initialisation of these 
structures is also very heavy, namely if the domains have large cardinality, d. 

-  The space required by AC-4 is also problematic, specially when the constraints 
are represented by intension, rather than by extension (in this latter case, the 
space required to represent the constraints is of the same order of 
magnitude...). 

-  All in all, it has been observed that, in practice (typically),  

AC-3 is usually more efficient than AC-4! 
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Enforcing Arc-Consistency: AC-6 

-  Algorithm AC-6 avoids the outlined inefficiency of AC-4 with a basic idea: instead 
of keeping (counting) all values vi from variable xi that support a pair xj-vj, it 
simply maintains the lowest such vi that supports the pair. 

-  The initialisation of the algorithm becomes “lighter”. Whenever the first value vi is 
found, no more supporting values are sought and no counting is required. Also, 
in AC-6, the supporting sets become singletons. 

-  Data Structures of Algorithm AC-6 
§  The List is adapted 
§  Boolean matrix M from AC-4 is kept. 
§  The AC-4 counters are disposed of; 
§  The supporting sets become “singletons”, only keeping 
    the lowest value supported . 

•  sup(1,x1) = [x2-2, x2-3, x3-2, x3-4, x4-2, x4-3] 
•  sup(2,x1) = [x2-4, x3-1, x3-3, x4-1, x4-3, x4-4] 
•  sup(3,x1) = [x2-1, x3-2, x3-4, x4-1, x4-2, x4-4] 
•  sup(4,x1) = [x2-1, x2-2, x3-1, x3-3, x4-2, x4-3] 
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Enforcing Arc-Consistency: AC-6 

-  Both phases of AC-6 use predicate 

 next_support(xi, vi, xj, vj, out v)  

that succeeds if there is in the domain of xj a “next” supporting value v, the 
lowest value, no less than some value, vj, such that xj-v supports xi-vi.  

 

predicate next_support(xi,vi,xj,vj, out v): boolean; 
     sup_s <- false; v <- vj; 
     while not sup_s and v =< max(dom(xj)) do  
        if not satisfies({xi-vi,xj-v},cij) then 

         v <- next(v,dom(xj))  
     else 
         sup_s <- true 
     end if 
  end while 
  next_support <- sup_s; 

   end predicate. 
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Enforcing Arc-Consistency: AC-6 

Algorithm AC-6 (initialisation phase) 

procedure initialise_AC-6(V,D,C); 
  List <- ∅; M <- 0; sup <- ∅; 
  for cij in C do 
  for vi in dom(xi) do 
    v = min(dom(xj)) 
    if next_support(xi,vi,xj,v,vj) then 
       sup(vi,xi)<- sup(vi,xi) ∪ {xj-vj} 
    else 
       dom(xi) <- dom(xi)\{vi};  
       M[xi,vi] <- 0;  
       List <- List ∪ {xi-vi} 
    end if 
  end for 
end for 
end procedure 
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Enforcing Arc-Consistency: AC-6 

Algorithm AC-6 (propagation phase) 

procedure propagate_AC-6(List,V,D,C); 
while List ≠ ∅ do 
   List <- List\{xj-vj} % removes xj-vj from List 
   for xi-vi in sup(vj,xj) do 

   sup(vi,xi) <- sup(vi,xi) \ {xj-vj} ; 
   if M[xi,vi] = 1 then 
      if next_suport(xi,vi,xj,vj,v) then 
         sup(vi,xi)<- sup(vi,xi) ∪ {xj-v} 
      else  
         dom(xi) <- dom(xi)\{vi}; M[xi,vi] <- 0; 
         List <- List ∪ {xi-vi} 
      end if 
    end if 
  end for 

end while 
end procedure 
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Enforcing Arc-Consistency: AC-6 

 
Space Complexity of AC-6: O(ad) 

In total, algorithm AC-6 maintains 

§  Supporting Sets: In the worst case, for each of the a constraints cij, each of the d 
pairs xi-vi is supported by a single value vj form xj (and vice-versa). Thus, the space 
required by the supporting sets is  O(ad). 

§  List: Includes at most nd labels 

§  Matrix M: Maintains nd Booleans. 

§  The space required by the supporting sets is dominant, so algorithm AC-6 has a space 
complexity of 

§  O(ad) 

 between  those of AC-3 ( O(a) ) and AC-4 ( O(ad2) ). 
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Enforcing Arc-Consistency: AC-6 

 
Time Complexity of AC-6: O(ad2) 
 

§  In both phases of initialisation and propagation, AC-6 executes 

 next_support(xi, vi, xj, vj, v) 

 in its inner cycle. 

§  For each pair xi-vi, variable xj is checked at most d times. 

§  For each arc corresponding to a constraint Cij, d pairs xi-vi  are considered at most. 

§  Since there are 2a arcs (2 per constraint Cij), the time complexity, worst-case, in 
any phase of AC-6 is 

O(ad2). 

§  Like in AC-4, this is optimal assymptotically. 
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Assessing Typical Complexity 

-  Typical complexity of  AC-x algorithms 

•  The worst case time complexity that can be inferred from the algorithms do not 
give a precise idea of their average behaviour in typical situations. For such study, 
either one tests the algorithms in: 

•  A set of “benchmarks”, i.e. problems that are supposedly representative of 
everyday situations (e.g. N-queens); or 

•  Randomly generated instances parameterised by  

•  their size (number of variables and cardinality of the domains) ; and  

•  their difficulty measured by 

•  density of the constraint network - % existing/ possible constraints; and  

•  tightness of the constraints - % of allowed / all tuples. 

•  The study of these issues has led to the conclusion that constraint satisfaction 
problems often exhibit a phase transition, which should be taken into account in 
the study of the algorithms. 
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Assessing Typical Complexity: Phase Transition 

-  This phase transition typically contains the most difficult instances of the 
problem, and separates the instances that are trivially satisfied from those 
that are trivially insatisfiable. 

-  For example, in SAT problems, it has been found that the phase transition 
occurs when the ratio of clauses to variables is around 4.3. 
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Assessing Typical Complexity 

-  Typical Complexity of algorithms AC-3, AC-4 e AC-6  
-  (N-queens) 
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Assessing Typical Complexity 

Typical Complexity of algorithms AC-3, AC-4 e AC-6 
 (randomly generated problems) 

n = 12 variables,  d= 16 values, density =  50% 
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Path-Consistency 

Definition (Path Consistency): 

A constraint satisfaction problem is path-consistent if,  

•  It is arc-consistent; and 

•  Every consistent 2-compound label {Xi-vi, Xij-vj,} can be extended to a 
consistent label with a third variable Xk ( k ≠ i and k ≠j }. 

The second condition is more easily understood  as 

•  For every compound label {Xi-vi, Xij-vj,}  there must be a value vk that 
supports {Xi-vi, Xij-vj,}, i.e. the compound label {Xi-vi, Xj-vj, Xk-vk} satisfies 
constraints Cij, Cik, and Ckj. 
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Binary Constraints: i-consistency 

 
 

-  The notions of node-, arc- and path-consistency can be generalised for a 
common criterion: i-consistency, with increasing demands of consistency. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

0 0 ≠ 

0,1 0,1 
≠ 

0,1 
≠ ≠ 

0..2 0..2 
≠ 

0..2 

≠ ≠ 

0..2 

≠ 
≠ 

≠ 

-  A node consistent network, that is not arc 
consistent 

-  An arc consistent network, that is not path 
consistent 

-  A path-consistent network, that is not 4-
consistent 
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Binary Constraints: i-consistency 

 
 
-  The  criterion of i-consistency is thus defined as follows. 

•  A network is i-consistent if all compound labels of cardinality i-1 can be 
extended to any other i-th variable. 

1.  For example, with k = i-1, any compound label <xa1-va1, xa2-va2, ..., xak-vak>, 
that satisfies the constraints over variables of set S =  {xa1, xa2, ..., xak} 
can be extended to another variable xai, i.e. there is a vai in the domain of xai 
that satisfies all the constraints defined on the set S ∪ {xai}  of variables. 

2.  As a special case, when i=1, only the unary constraints must be satisfied. 

-  Additionally, a network is strongly i-consistent if it is k-consistent for all k ≤ i. 

-  Given this definitions it is easy to show that the following equivalences: 

 Node-consistency   ↔  strong 1-consistency 

 Arc- consistency  ↔  strong 2-consistency 

 Path-consistency  ↔  strong 3-consistency 
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Binary Constraints: i-consistency 

-  Notice that the analogies of node-, arc- and path- consistency were made with 
respect to strong i-consistency. 

-  This is because a constraint network may be i-consistency but not m-
consistent (for some m < i). For example, the network below is  3-consistent, 
but not  2-consistent. Hence it is not strongly 3-consistent. 

 
 
 
 
 
 
 
 

0 0 

0,1 
≠ ≠ 

B 

C A 
-  The only 2-compound labels, that satisfy the 

constraints 

{A-0,B-1},  {A-0,C-0}, and {B-1, C-0} 

 may be extended to the remaining variable 

{A-0,B-1,C-0} 

-  However, the 1-compound label {B-0} cannot be 
extended to variables A or C {A-0,B-0} !  
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Binary Constraints: i-consistency 

 
 -  For i > 3, i-consistency cannot be implemented with binary constraints alone, In fact: 

-  2-consistency checks whether a 1-label {xi-vi} can be extended to some other  
2-label {xi-vi, xj-vj}. If that is not the case, label {xi-vi} is removed from the 
domain of Xi. 

-  3-consistency checks whether a 2-label {xi-vi, xj-vj} can be extended to a 3-label 
{xi-vi, xj-vj, xk-vk} . If that is not the case, label {xi-vi, xj-vj} is removed. 

-  Removing label {xi-vi, xj-vj} is not achieved by removing values from the 
domains of the variables, but rather by tightening a constraint Cij on variables xi 
and xj. 

-  By analogy, to impose 4-consistency 3-labels have to be removed so a constraint 
on 3 variables has to be created or tightened. 

-  In general, maintaining i-consistency requires imposing constraints with arity i-1. 
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Binary Constraints: i-consistency 

 
 -  The algorithms that were presented for achieving arc-consistency could be 

adapted to obtain i-consistency,  provided that we consider constraints with i-1 
arity. 

-  The adaptation of the AC-1 algorithm (brute-force) would have  

-  Time complexity of O(2i (nd)2i). 

-  Space complexity of O(nidi). 

-  The adaptation of the AC-4 and AC-6 algorithms lead to optimal asymptotic time 
complexity of  Ω (nidi)  ( a lower bound). 

 

-  Given the mentioned complexity (even if the typical cases are not so bad) their 
use in backtrack search is generally not considered.  

-  The main application of these criteria is in cases where tractability can be 
proved  based on these criteria. 
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Network Consistency and Satisfiability 

 
 All types of i-consistency can be imposed by polinomial algorithms, with asymptotic 
time complexity  Ω(nidi) even when the corresponding problems (modelled with 
binary constraints) are NP-complete. 

Hence, in general for a network with n variables, i-consistency (for any i < n) i-does 
not imply satisfiability of the problem, i.e.  

There are unsatisfiable problems modelled with binary constraints whose 
corresponding network is i-consistent. 

Of course, the converse is also true 

There are satisfiable problems modelled with binary constraints whose 
corresponding network is not i-consistent. 

Nevertheless, in some special cases, the two concepts (i-consistency and  
satisfiability are equivalent). 

We will overview two such cases. 
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Network Consistency and Satisfiability 

 
 Case 1: A network of binary constraints, whose variables have only 2 values in their 
domain, is satisfiable iff it can be made path-consistent. 

Proof: By recasting the problem to 2-SAT. 

If the network is path-consistent, then  

1.  all binary constraints are explicit, and 

2.  the matrices representing the constraints have a maximum of 2 rows and 2 
columns. 

In this case, the satisfaction of a constraint can be equated to the satisfaction of a 
Boolean formula in disjunctive normal form (see figure below for an example). 

 

   (a2 ∧ b3)  ∨ (a2 ∧ b4) ∨ (a5 ∧ b4) 

 

 

    

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

a\b	
   3	
   4	
  

2	
   1	
   1	
  

5	
   0	
   1	
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Network Consistency and Satisfiability 

Now, these formulae can be converted into conjunctive normal form. 

(a2 ∧ b3 ) ∨ (a2 ∧ b4 ) ∨ (a5 ∧ b4 ) ⇔ 
  (a2∨a2∨a5) ∧ (a2∨a2∨b4) ∧ (a2∨b4∨a5) ∧ (a2∨b4∨b4) 
∧ (b3∨a2∨a5) ∧ (b3∨a2∨b4) ∧ (b3∨b4∨a5) ∧ (b3∨b4∨b4) 

The resulting clauses have as many literals as 1´s in the matrix that models a 
constraint (after imposing path-consistency. In this case the clauses have 3 literals. 

But such clauses may be simplified, by adding the semantics associated to the 
encoding (a variable must have a single value) 

a2 ∨ a5 = true;  b3 ∨  b4 = true 

Yielding, (after simplification) a set of clauses, each having only 2 literals. 

   true ∧ (a2 ∨ b4 ) ∧  true  ∧ (a2 ∨ b4 )  

∧   true ∧    true    ∧  true  ∧   true      ⇔ 

   (a2∨b4) ♦ 
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Graph Width 

-  Before presenting another theorem relating k-consistency and tractability it is  
convenient to consider constraint networks with n-ary constraints (n>2), either 
because a problem is specified with such constraints, or because these 
constraints are induced in a (binary) graph when k-consistency (k>3) is 
imposed on the constraint network. 

-  For this purpose we have the following definition: 

Definition: Primal Graph of a Constraint Network 

The primal graph of a constraint network is a graph where there is an edge 
between two variables iff there is some constraint with the two variables in its 
scope. 

 

Given the definition, the primal graph of a constraint satisfaction problem 
coincides with the problem graph if the only constraints to be considered are 
binary (or unary). 
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Graph Width 

Example:  

1.  Let us assume that the in i t ia l 
formalisation of a problem leads to the 
network P1. 

2.  Imposing path-consistency, arcs are 
added between variables, e.g. 2-3, 
resulting in network P2 (still a graph). 

3.  Imposing 4-consistency, hyper-arcs are 
imposed on variables 1-2-3, 1-2-5 and 
1-3-6, resulting in network P3 (a hyper-
graph). 

4.  The primal graph of the problem is 
shown as graph P4. 
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Graph Width 

 

Definition: Node width, given ordering O  

 Given some total ordering, O, defined on the nodes of a graph, the width 
of a node N, given ordering O is the number of lower order nodes that are 
adjacent to N. 

Example: For the graph and the ordering O1 shown we have 
§  w(1,O1) = 0    
§  w(2,O1) = 1 (node 1) 
§  w(3, O1) = 2 (nodes 1 and 2) 
§  w(4, O1) = 3 (nodes 1, 2 and 3) 
§  w(5, O1) = 3 (nodes 1, 2 and 4) 
§  w(6, O1) = 3 (nodes 1, 3 and 4) 
§  w(7, O1) = 3 (nodes 4, 5 and 6) 
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Graph Width 

-  Different orderings will produce different widths for the nodes of the graphs. 

Example: For the same graph but with an “inverted ordering O2, we have 

 
§  w(1, O2) = 0    
§  w(2, O2) = 1 (node 1) 
§  w(3, O2) = 1 (node 1) 
§  w(4, O2) = 3 (nodes 1, 2 and 3) 
§  w(5, O2) = 2 (nodes 2 and 4) 
§  w(6, O2) = 2 (nodes 3 and 4) 
§  w(7, O2) = 5 (nodes 2, 3, 4, 5 and 6) 
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Graph Width 

-  From the width of the nodes one may obtain the width of a graph. 

Definition: Graph width, given ordering O  

 Given some total ordering, O, defined on the nodes of a graph, the width 
of the graph, given ordering O is the maximum width of its nodes, given 
ordering O.  

Example: For the two orderings we obtain  
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W(G,O1) = 3 W(G,O2) = 5 
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Graph Width 

-  Now we may define the width of a graph, independent of the ordering used. 

Definition: Graph width 

The width of a graph is the lowest width of the graph over all possible total 
orderings. 

 In the example, it is easy to see that the width of the graph is 3. 

2 3 

5 6 

1 
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4 

a)  Ordering O1 assigns width 3 to the graph. Hence 
the graph width is not greater than 3. 

b)  A width of 2 on a graph with 7 nodes would 
require the graph to have at most 0+1+5*2 = 11 
edges. Hence, the width of the graph cannot be 
less than 3. 

c)  From a) and b) the width of graph G is 3. 
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Tractability  and i-Consistency 

-  Now we can present the theorem relating k-consistency and the width of a 
graph, which indirectly checks whether a problem is tractable. 

Theorem: Graph width and Satisfiability 

 Let a constraint satisfaction problem be modelled by a constraint network, 
that after imposing k-consistency leads to a primal graph of width k-1. 
Under these conditions, any ordering that assigns width k to the primal 
graph is a backtrack free ordering (BTF). 

Example: For the networks below assumed to be path-consistent (3-consistent) 
O1 and O2 are BTF orderings, but O3 is not. 
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Tractability  and i-Consistency 

-  In fact, for ordering O3  

1.  every label {x1-v1, x2-v2}, has a support in x3, 
say {x3-v3}. 

2.  But, label {x1-v1, x3-v3}, has a support in x4, 
say {x4-v4}. 

3.  Now, label {x3-v3, x4-v4}, has a support in x5, 
say {x5-v5}. 

4.  Then, label {x3-v3, x5-v5}, has a support in x6, 
say {x6-v6}. 

5.  And, label {x5-v5, x6-v6}, has a support in x7, 
say {x7-v7}. 

6.  Finally, label {x5-v5, x7-v7}, has a support in x8, 
say {x8-v8}. 
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•  All things considered, label {x1-v1, x2-v2, x3-v3, x4-v4, x5-v5, x6-v6, x7-v7,x8-v8} is a 
solution of the problem, and was found with no backtracking 



19 October 2015 Constraint Programming 

Tractability  and i-Consistency 

-  However, for ordering O3  

§  every label {x1-v1, x2-v2}, has a support in x4, 
say {x4-u4}. 

§  every label {x1-v1, x3-v3}, has a support in x4, 
say {x4-v4}. 
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-  But there is no guarantee that v4 and u4 are the same! 

-  In fact, there might be no value in the domain of x4 that supports both the 
assignments {x1-v1, x2-v2}, and {x1-v1, x3-v3}. 

-  If this is the case, after assigning values {x1-v1, x2-v2, x3-v3}, no value exists for x4 
that is compatible with these and one of them must be backktracked!}. 

-  The same would happen with variable x8. 
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Graph Width 

-  To take advantage of the relation between i-consistency and induced graph 
width, it is still necessary to find the width of a graph or, equivalently, one optimal 
ordering, i.e. one that induces a minimal width. 

-  Fortunately there is a greedy algorithm (thus polinomial) that finds all optimal 
orderings. The idea is very simple. Always select (nondeterministically) a node 
with the least number of adjacent nodes (less degree) . Put it in the back of the 
ordering,  delete all the arcs leading to the node, and proceed recursively. 

function min-width(G: set of Nodes, A: set of Arcs): 
  Sequence of Nodes; 

   if G.nodes = {n} then   
      L  ← [n] 
   else 
      n <- argN min {degree(n,G,A)}  
      G1.arcs ← G.arcs \ {A: A = (_,N)  ∨ A = (N,_) 
      G1.nodes ← G.nodes\{N} 
      L ← min-width(G1) + [ n ] 
   end if 
   min-width ← L  
 end function 

19 October 2015 45 Constraint Programming 



19 October 2015 Constraint Programming 46 

Network Consistency and Satisfiability 

 
 •  So, in addition to 

Case 1: A network of binary constraints, whose variables have only 2 values in 
their domain, is satisfiable iff it can be made path-consistent. 

 we have 

Case 2: A network of constraints (of any arity), whose primal graph has width k is 
satisfiable iff it is k+1-consistent. 
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•  For example: 

2-consistency (i.e. arc-consistency) of the 
constraint network guarantees the 
satisfaction of the associated constraint 
problem, if all constraints are binary and 
the constraint graph has the topology of a 
tree. 

A BTF ordering proceeds from the root to 
the leaves 
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Arc-consistency: special purpose propagators 

 
  Some constraints may take advantage of some special features to improve the 
efficiency of their propagators.  

Take for example the propagator for the n-queens problem: no_attack(i, qi, j, qj). 

The usual arc-consistency would propagate the constraint (i.e. prune each of the 
values in the domain of q1/q2 with no supporting value in q2/q1), whenever the 
constraint is taken from the queue (assuming an AC-3 type algorithm).  

However, it is easy to see that a queen with 4 values in the domain offers at least one 
support value to any other queen. 

In fact a queen qi can only be attacked by 3 queens from another row j. Hence the 4th 
queen in row j will not attack it. 

Hence, the propagator for no_attack should first check the cardinality of the domains, 
and only check for supports when one of the queens have a domain with cardinality of 
3 or less! 
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Non-Binary Constraints: Bounds-consistency 

 
 
In numerical constraints (equality and inequality constraints) it is very usual not to 
impose a too demanding arc-consistency, but rather to impose mere bounds 
consistency. 

Take for example the simple constraint a < b over variables a and b with domains 
0..1000. 

In such inequality constraints, the only values worth considering for removal are 
related to the bounds of the domains of these variables. 

In particular, the above constraint can be compiled into 

   max(a) < max(b)   and       min(b) < min(a) 

In practice this means that the values that can be safely removed are 

  all values of a above the maximum value of b; 

  all values of b below the minimum value of a; 

These values can be easily removed from the domains of the variables. 
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Non-Binary Constraints: Bounds-consistency 

 
 
It is interesting to note how this kind of consistency detects contradictions. 

Take the example of a < b and b > a, two clearly unsatisfiable constraints. If the 
domains of a and b are the range 1..1000, it will take about 500 iterations to detect 
contradiction 

 a:: 1 .. 1000, b:: 1 .. 1000  a < b  →   a:: 1 .. 999, b:: 2 .. 1000 

 a:: 1 .. 999,   b:: 2 .. 1000  a > b  →   a:: 3 .. 999, b:: 2 .. 998 

 a:: 3 .. 999,   b:: 2 .. 998  a < b →   a:: 3 .. 997, b:: 4 .. 998 

 a:: 3 .. 997,   b:: 4 .. 998  a > b →   a:: 5 .. 997, b:: 4 .. 996 

   .... 

 a:: 499..501, b:: 498..500  a < b →   a::499..499, b::500..500 

 a:: 500..500, b:: 500..500  a > b →   a::501..500, b::500..499 

Now, the lower bound is greater than the upper bound of the variables domains, 
which indicates constradiction! 
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Non-Binary Constraints: Bounds-consistency 

 
 
This reasoning can be extended to more complex numerical constraints involving 
numerical expressions:. 

Example: a + b ≤ c  

The usual compilation of this constraint is  

 max(a) ≤ max(c) – min(b)  to prune high values of a 

 max(b) ≤ max(c) – min(a)  to prune high values of b 

 min(c) ≥ min(a) + min(b)  to prune high values of a 

Many numerical relations envolving more than two variables can be compiled this 
way, so that the corresponding propagators achieve bounds consistency. 

This is particularly useful when the domains are encoded not as lists of elements 
but as pairs min .. max as is usually the case for numerical variables. 
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Enforcing generalised arc-consistency: GAC-3 

 
 
 
 

-  All algorithms for achieving arc-consistency can be adapted to achieve 
generalised arc-consistency (or domain-consistency) by using a modified 
version of the revise_dom predicate, that for every k-ary constraint checks 
support values from  each variable in the remaining k-1 variables. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

predicate revise_gac(V,D, c ∈ C): boolean; 
   R <- ∅; 
   for xi in vars(c) 
      vi in dom(Xi) do 
   Y  = vars(c) \ {xi} ; 
      if  ¬ ∃ V in dom(Y): satisfies({xi-vi, Y-V}, c) then 
         dom(Xi) <- dom(xi) \ {vi}; 
         R <- R ∪ {i}; 
      end if 
   end for 
   revise_gac <- R; 
end predicate 
 

v
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Enforcing generalised arc-consistency: GAC-3 

 
 
 
 

-  The GAC-3 algorithm is presented below, as an adaptation of AC-3. 

-  Any time a value is removed from a variable Xi, all constraints that have this 
variable in the scope are placed back in the queue for assessing their local 
consistency. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

procedure AC-3(V, D, C); 
   NC-1(V,D,C);  % node consistency 
   Q = { c | c ∈ C}; 
   while Q ≠ ∅ do 
      Q = Q \ {c}   % removes an element from Q  
      for i in revise_gac(V,D, c ∈ C) do   % revised xi 
         Q = Q ∪ {r | r ∈ C ∧  i ∈ vars(r) ∧ r ≠ c } 
      end if 
   end while 
end procedure 
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Complexity of GAC-3 

 
Time Complexity of GAC-3: O(a k2 dk+1) 
 

-  Every time that an hyper-arc/n-ary constraint is removed from the queue Q, 
predicate revise_gac is called, to check at most k*dk tuples of values. 

-  In the worst case, each of the a constraints is placed into the queue at most 
k*d times. 

-  All things considered, the worst case time complexity of GAC-3, is O(kdk*a*kd) 

O(a k2 dk+1) 

-  Of course, when all the constraint are binary the complexity of GAC-3 is the 
same of AC-3, i.e. 

O(a d3) 
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Constraint Propagation 

Generalised arc-consistency provides a scheme for an architecture of constraint 
solvers, even when constraints are not binary. 

For every constraint a number of propagators are considered. In general, each  
propagator: 

-  affects one variable (aiming at narrowing its domain, when invoked); 

-  Is triggered by some events, namely some change in the domain of some 
variable; 

For example, the posting of the constraint  c :: x + y = z creates 3 propagators 

Px: x ß y – z          ;     Py: y ß z – x     ;       Pz: z ß x + y 

Propagator Px (likewise for propagators Py and Pz) is triggered by some change in 
the domain of variables y or z. 

When executed it (possibly) narrows the domain of x. If this becomes empty, a 
failure is detected and backtracks is enforced. 
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Constraint Propagation 

The life cycle of such propagators can be schematically represented as follows: 
1.  Propagators are created when the corresponding constraint is posted.  They 

are enqueued  and  become ready for execution.  
2.  When they reach the front of the queue they are executed. Upon execution the 

domain of the propagator variable is possibly narrowed.  
3.  If the domain is empty, backtracking occurs, and after trailing, the propagator 

is put back in the queue.   
4.  Otherwise, the propagator stays waiting for a triggering event.  
5.  When one such event occurs the propagator is enqueued .  While enqueued, 

other triggering events are possibly “merged” in the queue. 
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Constraint Propagation 

Px: x ß y – z          ;     Py: y ß z – x     ;       Pz: z ß x + y 

Propagators aim at maintaining some form of consistency, typically domain 
consistency or bounds consistency,  This has a direct influence on the events that 
trigger them. 

For example, with bounds consistency, propagator Px is triggered when the 
maximum or minimum values in the domain of variables y and z is changed. 
These are the only events that change the maximum and minimum values of the 
domain of variable x. 

In contrast, if domain consistency is maintained, propagator Px is triggered 
whenever any value is removed from the domain of any of the variables y or z, 
since these removals may end the support of some value in the domain of x. 

This also means that sometimes the activation of the propagator does not lead to 
the removal of any value in the domain. For example value 3 in x may be 
supported by either values 5 and 2, or by values 7 and 4 for variables y and z. If 7 
is removed from the domain of y,  x= 3 still has support in y and z.  
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Generalised arc-consistency: Global Constraints 

The time complexity of generalised arc consistency for n-ary constraints may be too 
costly. Consider the case of k variables that all have to take different values. 

x1 ≠ x2, x1 ≠ x3 ... x1 ≠ xk ... xk-1 ≠ xk 

These k(k-1)/2 binary constraints can be replaced by a single  k-ary constraint  

all_diffferent(x1 , x2, x3 , .. , xk) 

However, checking the consistency of such constraint by the naïve method 
presented, would have complexity O(a k2 dk+1) , i.e. O( k4 dk+1). 

This is why, some very widely used n-ary constraints are dealt with as global 
constraints, for which special purpose, and much faster, algorithms exist to check 
the constraint consistency. 

In the all_different constraint, an algorithm based in graph theory enforces this 
checking with complexity O(d k3/2), much better than the naïve version. 

For example for d  ≈ k ≈ 9 (sudoku problem!) the number of checks is reduced from 
92*910 ≈ 3*1010 to a much more acceptable number of 9* 93/2 ≈ 243.  


