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Search and Optimisation 

-  An overview 

• Backtrack Search and Constraint Propagation 

• Constraint Networks 

• Consistency Criteria 

• Node-, Arc- and Path-consistency 
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Constraint Programming 

Constraint Programming (and Languages) is driven by a number of goals 

-  Expressivity  

-  Constraint Languages should be able to easily specify the variables, 
domains and constraints (e.g. conditional, global, etc...); 

-  Declarative Nature 

-  Ideally, programs should specify the constraints to be solved, not the 
algorithms used to solve them 

-  Efficiency 

-  Solutions should be found as efficiently as possible, i.e. with the 
minimum possible use of resources (time and space). 

These goals are partially conflicting goals and have led to the various 
developments in this research  and development area. 
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Search Methods – Pure Backtracking 

-  The same specification can lead to different search strategies when sequentially 
assigning values to variables. 

-  The simplest backtracking strategy sees constraints in a passive form: 

§  Whenever a variable is assigned a variable, the constraints whose variables 
are  assigned variables are checked for satisfaction 

§  If this is not the case, the search backtracks (chronological backtrack). 

-  This is a typical generate and test procedure 

§  Firstly, values are generated 

§  Secondly, the constraints are tested for satisfaction. 

-  Of course, tests should be done as soon as possible, i.e. a constraint is 
checked whenever all its variables are assigned values. 

-  This procedure is illustrated in the 8-queens problem. 
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Backtracking 

Tests  0        Backtracks 0 
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Backtracking 

Tests  0 +1 = 1        Backtracks 0 

Q1 \= Q2,  L1+Q1 \= L2+Q2,  L1+Q2 \= L2+Q1. 
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Backtracking 

Q1 \= Q2,  L1+Q1 \= L2+Q2,  L1+Q2 \= L2+Q1. 

Tests  1 +1 = 2        Backtracks 0 
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Backtracking 

Q1 \= Q2,  L1+Q1 \= L2+Q2,  L1+Q2 \= L2+Q1. 

Tests  2 +1 = 3        Backtracks 0 
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Backtracking 

Tests  3 +1 = 4        Backtracks 0 
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Backtracking 

Tests  4 +2 = 6        Backtracks 0 
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Backtracking 

Tests  6 + 1 = 7      Backtracks 0 
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Backtracking 

Tests  7 + 2 = 9      Backtracks 0 
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Backtracking 

Tests  9 + 2 = 11      Backtracks 0 
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Backtracking 

Tests  11 + 1 + 3 = 15     Backtracks 0 
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Backtracking 

Tests  15+1+4+2+4 = 26      Backtracks 0 
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Backtracking 

Tests 26+1 = 27              Backtracks 0 
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Backtracking 

Tests  27 + 3 = 30        Backtracks 0 
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Backtracking 

Tests  30+2 = 32    Backtracks 0 
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Backtracking 

Tests  32 + 4 = 36          Backtracks 0 
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Backtracking 

Tests  36 + 3 = 39          Backtracks 0 
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Backtracking 

Tests  39 + 1 = 40         Backtracks 0 
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Backtracking 

Tests  40 + 2 = 42         Backtracks 0 
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Backtracking 

Tests  42 + 3 = 45         Backtracks 0 
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Backtracking 

Tests  45                 Backtracks 0+ 1 = 1 

Q6 Fails  

Backtracks 
to 

Q5 
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Backtracking 

Tests  45                                           Backtrackings 1 
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Backtracking 

Tests  45 + 1 = 46                            Backtracks 1 
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Backtracking 

Tests  46 + 2 = 48                            Backtracks 1 
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Backtracking 

Tests  48 + 3 = 51                            Backtracks 1 
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Backtracking 

Tests  51 + 4 = 55                            Backtracks 1 
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Backtracking 

Tests  55+1+3+2+4+3+1+2+3 = 74         Backtracks 1+2 = 3 

Q6 Fails  

Backtracks 
to 

Q5 

and next to 

Q4 
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Backtracking 

Tests  74+2+1+2+3+3=  85            Backtracks 3 
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Backtracking 

Tests  85 + 1 + 4 =  90                              Backtracks 3 
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Backtracking 

Tests  90 +1+3+2+5 =  101                       Backtracks 3 
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Backtracking 

Tests  101+1+5+2+4+3+6=  122              Backtracks 3 
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Backtracking 

Tests  122+1+5+2+6+3+6+4+1=  150      Backtracks 3+1=4 

Q8 Fails  

Backtracks 
to 

Q7 
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Backtracking 

Tests  150+1+2= 153                        Backtracks 4+1=5 

Q7 Fails  

Backtracks 
to 

Q6 
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Backtracking 

Tests  153+3+1+2+3= 162               Backtracks 5+1=6 

Q6 Fails  

Backtracks 
to 

Q5 
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Backtracking 

Tests  162+2+4= 168                        Backtracks 6 
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Backtracking 

Tests  168+1+3+2+5+3+1+2+3= 188       Backtracks 6+1 = 7 

Q6 Fails  

Backtracks 
to 

Q5 
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Backtracking 

Tests  188+1+2+3+4= 198               Backtracks 7+1=8 

Q5 Fails  

Backtracks 
to 

Q4 
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Backtracking 

Tests  198 + 3 = 201                         Backtracks 8 
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Backtracking 

Tests  201+1+4 = 206                               Backtracks 8 
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Backtracking 

Tests  206+1+3+2+5 = 217                       Backtracks 8 
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Backtracking 

Tests  217+1+5+2+5+3+6 = 239              Backtracks 8 
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Backtracking 

Tests  239+1+5+2+4+3+6+7+7= 274       Backtracks 8+1 = 9 

Q8 Fails  

Backtracks 
to 

Q7 
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Backtracking 

Tests  274+1+2= 277                    Backtracks 9+1=10 

Q7 Fails  

Backtracks 
to 

Q6 
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Backtracking 

Tests  277+3+1+2+3= 286           Backtracks 10+1=11 

Q6 Fails  

Backtracks 
to 

Q5 
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Backtracking 

Tests  286+2+4= 292                         Backtracks 11 
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Backtracking 

Tests  292+1+3+2+5+3+1+2+3= 312     Backtracks 11+1=12 

Q6 Fails  

Backtracks 
to 

Q5 
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Backtracking 

Tests  312+1+2+3+4= 322           Backtracks 12+2=14 

Q5 Fails  

Backtracks 
to 

Q4 

and next to 

Q3 
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Backtracking 

Tests  322 + 2 = 324                    Backtracks 14 

Q1 = 1 

Q2 = 3 

Q3 = 5 

Impossible ! 
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Search Methods (2) – Backtracking + Propagation 

-  A more efficient backtracking search strategy sees constraints as active 
constructs: 

§  Whenever a variable is assigned a variable, the consequences of such 
assignment are taken into account to narrow the possible values of the 
variables not yet assigned. 

§  If for one such variable there are no values to chose from, then a failure 
occurs and the search backtracks. 

-  This is a typical test and generate procedure 

§  Firstly, values are tested to check their possible use. 

§  Secondly, the values are assigned to the variables. 

-  Clearly, the reasoning that is done should have the adequate complexity 
otherwise the gains obtained from the narrowing of the search space are offset 
by the costs of such narrowing. 

-  This procedure is illustrated again with the 8-queens problem. 
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Search Methods (2) – Backtracking + Propagation 

Tests  0                                                  Backtracks 0 
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Search Methods (2) – Backtracking + Propagation 

1 1 

1 

1 

1 

1 

1 1 

1 

1 

1 

1 

1 

1 
Tests  8 * 7 = 56                     Backtracks 0 

Q1 #\= Q2,  L1+Q1 #\= L2+Q2,  L1+Q2 #\= L2+Q1. 
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Search Methods (2) – Backtracking + Propagation 
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Tests  56 + 6 * 6 = 92                     Backtracks 0 
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Search Methods (2) – Backtracking + Propagation 
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Tests  92 + 21 = 113                   Backtracks 0 
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Search Methods(2a)  – B+P w/Heuristics 

-  In both types of backtrack search (pure backtracking as well as in backtracking + 
propagation) there is a need for heuristics. 

-  After all, in decision problems with n variables, a perfect heuristics would find a 
solution (if there is one) in exactly n steps (i.e. with n decisions – polinomial time). 

-  Of course, there are no such perfect heuristics for non-trivial problems (this would 
imply P = NP, a quite unlikely situation), but good heuristics can nonetheless 
significantly decrease the search space. Typically a heuristics consists of 

§  Variable selection: The selection of the next variable to assign a value 

§  Value selection: Which value to assign to the variable 

-  The adoption of a backtrack + propagation search method allows better heuristics 
to be used, that are not available in pure backtrack search methods. 

-  In particular a very simple heuristics, first-fail, is often very useful: whenever a 
variable is restricted to take a single value, select that variable and value. 

-  This procedure is again illustrated with the 8-queens problem. 
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Search Methods(2a)  – B+P w/Heuristics 
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Tests  92 + 21 = 113                   Backtracks 0 

Which 
queen to 

label?  
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Search Methods(2a)  – B+P w/Heuristics 
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Tests  92 + 21 = 113                   Backtracks 0 

Q6  

may only 
take value 

 4 
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Search Methods(2a)  – B+P w/Heuristics 
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Tests  113+3+3+3+4 = 126                  Backtracks 0 
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Search Methods(2a)  – B+P w/Heuristics 
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Tests  126                     Backtracks 0 

Q8  

may only 
take value 

 7 
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Search Methods(2a)  – B+P w/Heuristics 
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Tests  126                     Backtracks 0 
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Search Methods(2a)  – B+P w/Heuristics 
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Tests  126+2+2+2=132                   Backtracks 0 
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Search Methods(2a)  – B+P w/Heuristics 
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Tests  132                     Backtracks 0 

Q4  

may only 
take value 

 8 
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Search Methods(2a)  – B+P w/Heuristics 
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Tests  132                     Backtracks 0 
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Search Methods(2a)  – B+P w/Heuristics 
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Tests  132+2+1=135                   Backtracks 0 
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Search Methods(2a)  – B+P w/Heuristics 
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Tests  135                            Backtracks 0 

Q5  

may only 
take value 

 2 
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Search Methods(2a)  – B+P w/Heuristics 
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Tests  135                            Backtracks 0 
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Search Methods(2a)  – B+P w/Heuristics 
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Tests  135+1=136                           Backtracks 0 
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Search Methods(2a)  – B+P w/Heuristics 
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Tests  136                        Backtracks 0 
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Search Methods(2a)  – B+P w/Heuristics 
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Tests  136                   Backtracks 0+1=1 

Q7  

may take NO 
value 

 Failure!  

Backtracks  

... to Q3 ! 
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Search Methods(2a)  – B+P w/Heuristics 
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Q1 = 1 

Q2 = 3 

Q3 = 5 

Impossible ! 
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Search Methods – B+P w/Heuristics 

-  The adoption of constraint propagation and backtrack is more efficient for three 
main reasons: 

§  Early detection of Failure: 

•  In this case, after placing queens Q1 = 1, Q2 = 3 and Q3 = 5, a failure is 
detected without any backtracking. 

§  Relevant backtracking:  

•  Although a failure is detected in Q7, backtracking is done to Q3, and to 
none of the other queens (Q4, Q5, Q6 and Q8, that are not relevant).  

•  With pure backtracking many backtracks were done to undo choices in 
these queens. 

§  Heuristics:  

•  Constraint Propagation makes it easy to adopt heuristics based on the 
remaining values of the unassigned variables. 
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Constraints: Basic Concepts 

-  Before addressing concepts and definitions we will informally see how this type 
of applications can be programmed in COMET. 

-  COMET is an Object Oriented language, with a syntax similar to JAVA, but with 
special classes and methods to deal with  
§    CP - Contraint Programming; and  
§    LS - Constrained Local Search 

-  In COMET, a CSP (Constraint Satisfaction Problem) is typically solved in CP 
with a program with the following structure 

 
 
 

import cotfd;  
 
Solver<CP> cp();  
   //declare the variables  
solve<cp> {  
   //post the constraints } 
using {  
   //non deterministic search }  
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Constraints: Basic Concepts 

-  Solver<CP> is a class with methods to associate variables and constraints as 
well as nondeterministic search. The constraints are declared within the 
solve<cp>{ } section.  

 

-  In this case, only a single solution is obtained for the CSP. There are two 
alternatives for this section: 

-  To obtain all solutions of a CSP problem: 

 

-  To obtain an optimal solution of a CSOP (Constraint Satisfaction and 
Optimisation Problem) 

 
 
 

solve<cp> { // post the constraints  } 

minimize<cp>  
   //expression or variable  
subject to  
   {  //post the constraints } 

solveall<cp>   {post the constraints } 
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Constraints: Basic Concepts 

-  Variables are objects, declared by identifying their 
§  Type, 
§  Domain, and 
§  Associated solver 

-  We will be mostly concerned with Finite Domain (FD) variables, whose type is 
var<CP>{int}, and have a domain that restricts the values that can appear in a 
solution of the problem. 

-   Typically the domain is defined as a range of integers, as in  

 
-  Alternatively, the domain can be a set of integers 

-  Ranges are defined over integers, sets over integers or enumerated 

var<CP>{int} x(cp,1..10); 

set{int} dom = {1,3,7}; 
var<CP>{int} y(cp,dom);  

enum country = {Belgium, USA, France, Portugal}; 
var<CP>{country} z(cp,country);  
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Constraints: Basic Concepts 

-  FD Boolean variables are a special case of FD variables. They could be 
regarded as numeric 0/1 Fd variable (and are often recast as such) but have 
different syntax. As expected, Its domain is the set {false, true}. 

-  In most cases, it is convenient to organize FD (or basic) variables in array data 
structures.  

-  As expected array data structures are usually associated with loop constructs 
for flow control, namely the forall construct. 

 

 

 

 

 

var<CP>{bool} b(cp); 

range Rng = 1..5; 
range Dom = 1..10; 
var<CP>{int} a[Rng](cp,Dom); 
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Constraints: Basic Concepts 

-  Many types of constraints are defined in the language as primitives. They 
belong to the class constraint and are declared in a solver with its post method. 

-  The most common constraints are arithmetic constraints, imposing a relation 
(==, !=, >, >=, <, <=) on arithmetic expressions built over CP and basic 
variables  and values with the arithmetic operators +, -, *, / (integer division)  
and % (modulo) . 

 

-  Usually, a problem is defined as a conjunction of constraints. Nevertheless 
other logical combinations of constraints are often possible to define, not only 
conjunctive, but also disjunctive, conditional and equivalence constraints).  

int a = 4; 
cp.post( x-a > y+2) ; 

int a = 4; 
cp.post( (x > y) && (x > z)) ; 
cp.post( (x > y) || (x > z)) ; 
cp.post( (x > y) => (x > z)) ; 
cp.post( (x > y) == (x > z)) ; 
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Constraints: Basic Concepts 

-  COMET supports standard operators, such as if, for and while, along with 
more advanced loop control capabilities, namely the forall construct. 

-  Note that if, while and for conditions must be decided at compile time, and may 
not contain FD variables. So the following snipet is valid 

   … but not  

 
-  The reason is simple: The constructs are meant to post the relevant constraints, 

and these must be determined before a solution is obtained (because it 
depends on the constraints that were posted!). 

 

 

var<CP>{int} a (cp,Dom); 
int i = 1;  
if (i <= n)  cp.post(a == i+1); 
else         cp.post(a == i-1); 

var<CP>{int} a (cp,Dom); 
var<CP>{int} b (cp,Dom); 
if (b <= n)  cp.post(a == i+1); 
else         cp.post(a == i-1); 
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Constraints: Basic Concepts 

-  Of course, conditional constraints may be used for this purpose. Instead of the 
invalid declaration 

… a valid declaration obeying to the same “logic” can be made with conditional 
constraints  

 

 

 

var<CP>{int} a (cp,Dom); 
var<CP>{int} b (cp,Dom); 
if (b <= n)  cp.post(a == i+1); 
else         cp.post(a == i-1); 

var<CP>{int} a (cp,Dom); 
var<CP>{int} b (cp,Dom); 
cp.post(  (b <= n) => (a == i+1) ); 
cp.post( !(b <= n) => (a == i-1) ); 
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Constraints: Basic Concepts 

-  The forall construct in COMET can be associated to universal quantification 
and is usually used with array data structures, as in  

-  Special aggregation operators (sum and prod) also exist implementing the 
corresponding mathematical operations. For example, 

 

… is equivalent but more efficient than the iterated sum below 

var<CP>{int} a[Rng] (cp,Dom); 
forall (i in Rng) cp.post(a[i] == …); 

var<CP>{int} a[1..10] (cp,Dom); 
cp.post( x == sum(i in 1..10) a[i]); 

var<CP>{int} a[1..10] (cp,Dom); 
var<CP>{int} s[2..10] (cp,Dom); 
cp.post( s[1] == a[1]); 
forall(i in 2..10) (s[i] = s[i-1]+ a[i]); 
cp.post( x == s[i]); 
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Constraints: Basic Concepts 

-  Many useful constraints are not easy to decompose into simpler arithmetic and 
logical constraints.  

-  Even when they are, there are some specialised algorithms that achieve better 
propagation. 

-  These are usually known as Global Constraints, and COMET supports a 
number of those that have been proposed in the literature: 

•  Element 
•  Table 
•  Alldifferent 
•  Cardinality 
•  Knapsack 
•  Circuit 
•  Sequence 
•  Stretch 
•  Regular 
•  Cumulative 

 

 

-  Or even with explicit  nested loops 
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Constraints: Basic Concepts 

-  We finish this brief introduction to COMET with the nondeterministic search 
that occurs in the using {…} section. 

-  In this section a non-deterministic search is declared, where alternative values 
for the value of a variable are explored in some order and backtracked if they 
lead to failure. 

-  This is specified in Comet with the tryall<cp> method, that tries all values of the 
domain of some variable in some arbitrary order (actually, increasing)  

 

-  That is equivalent to the call of function label/1. 

var<CP>{int} x(cp,Dom); 
... 
tryall<cp>(v in Dom) cp.label(x,v);  

var<CP>{int} x(cp,Dom); 
... 
label(x);  
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Constraints: Basic Concepts 

-  Of course, many variables may exist that must be labelled. Often there the 
variables to label are in one array, x. In this case, one may label all elements of 
the array in increasing order as in ( again equivalent to label(x).) 

equivalent to 

-  A more efficient policy (heuristics) is to label variables by increasing number of 
elements in their domain as in  

 

-  This policy is so common that there is a built in function equivalent to it, namely 

var<CP>{int} x[Rng](cp,Dom); 
... 
forall(i in Rng)  
   tryall<cp>(v in Dom) cp.label(x,v); } 

var<CP>{int} x[Rng](cp,Dom); 
... 
forall(i in Rng) by (x[i].getSize()) 
     tryall<cp>(v in Dom) cp.label(q[i],v);  

  label(x); 

   labelFF(x); 
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Constraints: Basic Concepts 

-  Finally to label two or more (arrays of) variables, the labeling may be done with 
many different policies: 

-  In sequence 

… or interleaving  

 
… or leaving the choice of order to the solver 

… or even with more sophisticated heuristics. 

var<CP>{int} x[Rng](cp,Dom); 
var<CP>{int} y[Rng](cp,Dom); 
... 
   label(x); 
   label(y); 

... 
forall(i in Rng) { 
   tryall<cp>(v in Dom) cp.label(x[i],v); 
   tryall<cp>(v in Dom) cp.label(y[i],v);  
}  

... 
label(cp) 

... 
labelFF(cp) 
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Constraints: Other Languages 

-  Comet is a language that supports both CP (Complete Backtrack Search) and CBLS 
(Constrained-Based Local Search) and is thus adopted in the course, although not 
exclusively. 

-  The major problem with this language is that it is being discontinued, and replaced 
(soon?) by Objective-CP (designed by the same authors – Pascal Van Hentenryck 
and Laurent Michel. 

-  Meanwhile, the language that is becoming quite standard, for CP alone, is Zinc / 
Minizinc. 

-  In particular, it provides an interface (Flat-Zinc) that almost all existing CP solvers can 
support (Gecode, Choco, SICStus, … CaSPER). 

-  This makes it possible to test solvers in a competition held annually with the CP 
conferences. 

-  However, heuristics cannot be fully specified (a number of annotations are available 
but they are not sufficent for some problems) and no support for local search is 
available. 

 

… or interleaving  
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Constraints: Other Languages 

int: n = 24; 
 
array [1..n] of var 1..n: q; 
 
include "alldifferent.mzn”; 
 
constraint alldifferent(q);                        % rows 
constraint alldifferent(i in 1..n)(q[i] + i-1);    % / diagonal 
constraint alldifferent(i in 1..n)(q[i] + n-i);    % \ diagonal 
 
 
solve   :: int_search( q, first_fail,indomain_min, complete) 
  satisfy; 
 
output  ["8 queens, CP version:\n"] ++ 

 [  if fix(q[i]) = j then "Q " else ". " endif ++ 
   if j = n then "\n" else "" endif 
 |  i, j in 1..n 
 ]; 

 

-  The declarative nature of ZINC is easily illustrated with the n-queens problem: 
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Constraints: Other Languages 

import cotfd;  
int t0 = System.getCPUTime();  
 
int n = 1000; range S = 1..n;  
 
Solver<CP> cp();  
   var<CP>{int} q[i in S](cp,S); 
 
solve<cp> { 
   cp.post(alldifferent(q)); 
   cp.post(alldifferent(all(i in S) q[i] + i));  
   cp.post(alldifferent(all(i in S) q[i] - i));  
}  
using {  
   forall(i in S) by(q[i].getSize())  
      tryall<cp>(v in S) cp.label(q[i],v); 
}  
 
int t1 = System.getCPUTime();  
cout << q << endl; 
cout << " cpu time (ms) = " << t1-t0 <<endl; 
cout << " number of fails = " << cp.getNFail() << endl; 

 … which can be compared with the Comet version: 
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Constraints: Basic Concepts 

-  As discussed when searching for a solution CP interleaves propagation of 
constraints with labelling, i.e. 

-  It propagates all constraints, removing values from the domain of variables 
that do not belong to a solution.  

§  For example if variables X and Y have domain 1..8 and there is a 
constraint X > Y, then their domains are pruned to X:2..8 and Y::1..7. 

-  When no more propagation is possible (i.e. a fixpoint has been reached) , a 
new variable is labelled (its domain reduced, usually to a single value) and 
step 1 is repeated. 

-  Of course, it is important that there is a good trade-off between the cost of 
propagating constraints and the pruning that results from it. 

-  To analyse such trade-off we will do a more theoretical and abstract discussion on 
these issues and will discuss later more practical issues.  
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Constraints: Basic Concepts 

 
We start with some definitions and notation: 

Definition (Domain of a Variable): 

§  The domain of a variable is the set of values that can be assigned to that 
variable. 

-  Given some variable x, its domain will be usually referred to as dom(x) or, 
simply, Dx.  

-  Example: The N queens problem may be modelled by means of N variables, 
x1 to xn, all with the domain from 1 to n. 

             Dom(xi) = {1,2, ..., n}      or      xi :: 1..n. 

 

-  Note:  In this course we will deal with Finite Domains, i.e. domains that are 
finite sets of values. 
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Constraints: Basic Concepts 

-  To formalise the notion of the state of a variable (i.e. its assignment with one of 
the values  in its domain) we have the following 

Definition (Label): 

§  A label is a Variable-Value pair, where the Value is one of the elements 
of the domain of the Variable. 

-  The notion of a partial solution, in which some of the variables of the problem 
have already assigned values, is captured by the following 

Definition (Compound Label): 

§  A compound label is a set of labels with distinct variables. 
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Constraints: Basic Concepts 

-  We come now to the formal definition of a constraint 

Definition (Constraint): 

§  Given a set of variables, a constraint is a set of compound labels on 
these variables.  

 
-  Alternatively, a constraint may be defined simply as a relation, i.e. a subset of 

the cartesian product of the domains of the variables involved in that 
constraint. 

-  For example, given a constraint Cijk involving variables  Xi, Xj and Xk, then  

Cijk ⊆ dom(Xi) x dom(Xj) x dom(Xk) 
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Constraints: Basic Concepts 

-  Given a constraint C, the set of variables involved in that constraint is denoted 
by vars(C). 

-  Simetrically, the set of constraints in which variable X participates is denoted 
by cons(X). 

-  Notice that a constraint is a relation, not a function, so that it is always Cij = Cji. 

-  In practice, constraints may be specified by 

•  Extension: through an explicit enumeration of the allowed compound 
labels;  

•  Intension: through some predicate (or procedure) that determines the 
allowed compound labels. 
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Constraints: Basic Concepts 

-  For example, the constraint C13 involving Q1 and Q3 in the 4-queens problem, 
may be specified 

-  By extension (label form):  

 C13 = {{Q1-1,Q3-2},{Q1-1,Q3-4},{Q1-2,Q3-1},{Q1-2,Q3-3}, 

  {Q1-3,Q3-2},{Q1-3,Q3-4},{Q1-4,Q3-1},{Q1-4,Q3-3}}. 

 or, in tuple (relational) form, omitting the variables 

 C13 = {<1,2>,<1,4>,<2,1>,<2,3>,<3,2>,<3,4>,<4,1>,<4,3>}.  

-  By intension:  

 C13 = (Q1 ≠ Q3)  ∧  (1+Q1 ≠ 3+Q3)  ∧  (3+Q1 ≠ 1+Q3). 
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Constraints: Basic Concepts 

Definition (Constraint Arity): 

§  The constraint arity of some constraint C is the number of variables 
over which the constraint is defined, i.e. the cardinality of the set Vars(C). 

-  Despite the fact that constraints may have an arbitrary arity, an important 
subset of the constraints is the set of binary constraints. 

-  The importance of such constraints is two-fold 

§  All constraints may be converted into binary constraints 

§  A number of concepts and algorithms are appropriate for these 
constraints. 
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Constraints: Basic Concepts 

 

Definition (Constraint Satisfaction 1): 

§  A compound label satisfies a constraint if their variables are the same 
and if the compound label is a member of the constraint. 

 

-  In practice, it is convenient to generalise constraint satisfaction to compound 
labels that strictly contain the constraint variables. 

Definition (Constraint Satisfaction 2): 

§  A compound label satisfies a constraint if its variables contain the 
constraint variables and the projection of the compound label to these 
variables is a member of the constraint. 
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Constraints: Basic Concepts 

 

Definition (Constraint Satisfaction Problem): 

 A constraint satisfaction problem is a triple <X, D, C> where  

§  X is the set of variables of the problem 

§  D is the domain(s) of its variables  

§  C is the set of constraints of the problem 

Definition (Problem Solution): 

 A solution to a Constraint Satisfaction Problem P: <X, D, C>, is a compound 
label over the variables X of the problem, which satisfies all constraints in C. 
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Constraints: Basic Concepts 

 

Definition (Constraint Satisfaction and Optimisation Problem): 

 A constraint satisfaction problem is a tuple < X, D, C, F > where  

§  X is the set of variables of the problem 

§  D is the domain(s) of its variables  

§  C is the set of constraints of the problem 

§  F is a function on the variables of the problem 

Definition (Problem Solution): 

 S is a solution of a  CSOP P: <X, D, C, F >, iff: 

§  S is a solution of the corresponding  CSP   P’: <X, D, C>; 

§  No other solution S’ has a better value for function F 
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Constraints: Basic Concepts 

-  For convenience, the constraints of a problem may be considered as forming a 
special constraint graph. 

Definition (Constraint Graph or Constraint Network): 

 The Constraint Graph or Constraint Network of a binary constraint 
satisfaction problem is defined as follows 

§  There is a node for each of the variables of the problem.  

§  For each non-trivial constraint of the problem, involving one or two 
variables, the graph contains an arc linking the corresponding nodes. 

-  When the problems include constraints with arbitrary arity, the Constraint 
Network may be formed after converting these constraints on its binary 
equivalent. 
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Constraints: Basic Concepts 

Example:  

 The 4 queens problem may be specified by the following constraint network: 

q1 in 1..4 

q4 in 1..4 

q3 in 1..4 q2 in 1..4 

C12 

C23 

C14 

C24 
C34 

C13 

   C13: 
    <1,2>, <1,4>, <2,1>,  
    <2,3>, <3,2>, <3,4>, 
    <4,1>, <4,3> 

  Cij: 
     qi \= qj 
     qi + i \= qj + j 
     qi - i \= qj - j 
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Constraints: Basic Concepts 

-  An important issue to consider in solving a constraint satisfaction problem is 
the existence of redundant values and labels in its constraints. 

Definition (Redundant Value): 
§  A value in the domain of a variable is redundant, if it does not appear in 

any solution of the problem. 

Definition (Redundant Label): 
§  A compound label of a constraint is redundant if it is not the projection 

to the constraint variables of a solution to the whole problem. 

-  Redundant values and labels increase the search space uselessly, and should 
thus be avoided. There is no point in testing a value that does not appear in 
any solution !  
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Constraints: Basic Concepts 

-  An important issue to consider in solving a constraint satisfaction problem is 
the existence of redundant values and labels in its constraints. 

Definition (Redundant Value): 

§  A value in the domain of a variable is redundant, if it does not appear in 
any solution of the problem. 

Example:  The 4 queens problem only admits two solutions:    

    <2,4,1,3>  and  <3,1,4,2>.  

 

 

 

 

-  Hence, values 1 and 4 are redundant in the domain of variables  q1 and q4, and 
values 2 and 3 are redundant in the domain of variables q2 and q3. 
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Constraints: Basic Concepts 

-  Redundant values and labels increase the search space useless, and should 
thus be avoided (there is no point in testing a value that does not appear in any 
solution !). Hence, the following definitions: 

Definition (Equivalent Problems): 

 Two problems P1 = <X1, D1, C1> and P2 = <X2, D2, C2> are equivalent iff they 
have the same variables (i.e. X1 = X2) and the same set of solutions. 

-  The “simplification” of a problem may also be formalised 

Definition (Reduced Problem): 

 A problem P=<X, D, C> is reduced to  P’=<X’, D’, C’> if 

§   P and P’ are equivalent; 
§  The domains D’ are included in D; and 

§  The constraints C’ are at least as restrictive as those in C. 
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Complexity of Search 

-  Clearly, the more a problem is reduced, the easier it is, in principle, to solve it. 

-  Given a problem P = <X, D, C> with n variables x1, .., xn the potential search 
space where solutions can be found (i.e. the leaves of the search tree with 
compound labels {<x1-v1>, ..., <xn-vn>}) has cardinality 

#S = #D1 * #D2 * ... * #Dn  

-  Assuming identical cardinality (or some kind of average of the domains size) 
for all the variable domains, (#Di = d) the search space has cardinality 

#S = dn 

 which is exponential on the “size” n of the problem. 
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Complexity of Search 

-  Given a problem with initial cardinality d of its variables, and a reduced 
problem whose domains have lower cardinality d’ (<d) the size of the potential 
search space also decreases exponentially! 

S’/S = d’n / dn = (d’/d)n 

-  Such exponential decrease may be very significant for “reasonably” large 
values of n, as shown in the table. 

10 20 30 40 50 60 70 80 90 100
7 6 4.6716 21.824 101.95 476.29 2225 10395 48560 226852 1E+06 5E+06
6 5 6.1917 38.338 237.38 1469.8 9100.4 56348 348889 2E+06 1E+07 8E+07
5 4 9.3132 86.736 807.79 7523.2 70065 652530 6E+06 6E+07 5E+08 5E+09
4 3 17.758 315.34 5599.7 99437 2E+06 3E+07 6E+08 1E+10 2E+11 3E+12
3 2 57.665 3325.3 191751 1E+07 6E+08 4E+10 2E+12 1E+14 7E+15 4E+17
d d'

S/S'
n
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Propagation in Search 

-  The effort in reducing the domains must be considered within the general 
scheme to solve the problem. 

-  In Constraint (Logic) Programming, the specification of the constraints usually 
precedes the enumeration of the variables. 

Problem(Vars):- 

   Declaration of Variables and Domains, 

   Specification of Constraints, 

   Labelling of the Variables. 

-  In general, search is performed exclusively on the labelling of the variables. 

-  The execution model alternates enumeration with propagation, making it 
possible to reduce the problem at various stages of the solving process. 
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Complexity of Search 

-  In complete search methods, that deal with search through backtracking, the 
solving method is constructive and incremental, whereby a compound label 
is completed (constructive) throughout the solving process, one variable at a 
time (incremental), until a solution is reached.  

-  However, one must check that, at every step in the construction of a solution, 
the resulting label still has the potential to reach a complete solution. 

Definition (k-Partial Solution): 

§  A k-partial solution of a constraint solving problem P = <X, D, C>, is a 
compound label on a subset of k of its variables, Xk, that satisfies all the 
constraints in C whose variables are included in Xk. 
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Propagation in Search 

-  Given a problem with n variables x1 to xn, and assuming a lexicographical variable/
value heuristics, the execution model follows the following pattern to incrementally 
extend partial solutions until a complete solution is obtained: 
 
Declaration of Variables and Domains, 
Specification of Constraints, 

   propagation,  % reduction of the whole problem   

% Labelling of Variables,   

   label(x1),    % variable/value selection with backtraking 

   propagation,  % reduction of problem {x2 ... xn} 

   label(x2),  

   propagation,  % reduction of problem {x3 ... xn} 

      ... 

   label(xn-1) 

   propagation,  % reduction of problem {xn} 

 label(xn) 
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Complexity of Search 

-  In practice, this potential narrowing of the search space has a cost involved in 
finding the redundant values (and labels). 

-  A detailed analysis of the costs and benefits in the general case is extremely 
complex, since the process depends highly on the instances of the problem to 
be solved. 

-  However, it is reasonable to assume that the computational effort spent on 
problem reduction is not proportional to the reduction achieved, becoming less 
and less efficient. 

-  After some point, the gain obtained by the reduction of the search space does 
not compensate the extra effort required to achieve such reduction. 
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Complexity of Search 

•  Qualitatively, this process may be represented by means of the following graph 

C
om

pu
ta

tio
na

l C
os

t  

R - Reduction Cost 

S- Search Cost 

R+S  
Combined Cost 

Effort spent in solving the problem 

Amount of Reduction Achieved 
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Propagation: Consistency Criteria 

-  Consistency criteria enable to establish redundant values in the variables 
domains in an indirect form, i.e. requiring no prior knowledge on the set of 
problem solutions.  

-  Hence, procedures that maintain these criteria during the “propagation” 
phases, will eliminate redundant values and so decrease the search space on 
the variables yet to be enumerated. 

-  For constraint satisfaction problems with binary constraints, the most usual 
criteria are, in increasingly complexity order, 

§  Node Consistency 

§  Arc Consistency 

§  Path Consistency 

§  Consistency-i 
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Node - Consistency 

Definition (Node Consistency): 

 A constraint satisfaction problem is node-consistent if no value on the 
domain of its variables violates the unary constraints. 

-  This criterion may seem both obvious and useless. After all, who would specify 
a domain that violates the unary constraints ?! 

-  However, this criterion must be regarded within the context of the execution 
model that incrementally completes partial solutions. Constraints that were not 
unary in the initial problem become so when one (or more) variables are 
enumerated. 
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Node - Consistency 

Example:  

-  After the initial posting of the 
constraints, the constraint 
network model at the right 
represents the 4-queens 
problem. 

-  After enumeration of variable 
Q1, i.e. X1=1, constraints C12, 
C13 and C14 become unary !! 

q1 in 1..4 

q4 in 1..4 

q3 in 1..4 q2 in 1..4 

C12 

C23 

C14 

C24 
C34 

C13 

q4 in 1..4 

q3 in 1..4 q2 in 1..4 
C23 

C24 
C34 

q2 ≠ 1, 2 q3 ≠ 1, 3 

q4 ≠ 1, 4 
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Node - Consistency 

-  An algorith that maintains node consistency should remove from the domains 
of the “future” variables the appropriate values. 

-  Maintaining node consistency achieves the following domain reduction.  

q4 in 2,3 

q3 in 2,4 q2 in 3,4 
C23 

C24 
C34 

q2 ≠ 1,2 q3 ≠ 1,3 

q4 ≠ 1,4 

q4 ≠ 1,4 

1 1
1 1
1 1

q2 ≠ 1,2 

q3 ≠ 1,3 
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Arc - Consistency 

-  A more demanding and complex criterion of consistency is that of arc-
consistency 

Definition (Arc Consistency): 

A constraint satisfaction problem is arc-consistent if,  

•  It is node-consistent; and 

•  For every label xi-vi of every variable xi, and for all constraints Cij, defined 
over variables xi and xj, there must exist a value vj that supports vi, i.e. 
such that the compound label {xi-vi, xj-vj} satisfies constraint Cij. 
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Arc - Consistency 

Example:  

-  After enumeration of variable q1=1, and making the network node-consistent, 
the 4 queens problem has the following constraint network: 

-  However, label q2-3 has no support in variable q3, since neither the compound 
label {q2-3 , q3-2} nor {q2-3 , q3-4} will satisfy constraint C23. 

-  Therefore, value 3 can be safely removed from the domain of q2. 

 

q4 in 2,3 

q3 in 2,4 Q2 in 3,4 
C23 

C24 
C34 

q2 ≠ 1,2 q3 ≠ 1,3 

q4 ≠ 1,4 

1 1
1 1
1 1 q4 ≠ 1,4 

q2 ≠ 1,2 

q3 ≠ 1,3 
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Arc - Consistency 

Example (cont.): 

-  In fact, none (!) of the values of q3 has support in variables q2 and q4, as shown 
below: 

 

 

 

§  Label q3-4 has no support in variable q2, since none of the compound 
labels {q2-3, q3-4} and {q2-4, q3-4} satisfy constraint C23. 

§  Label q3-2 has no support in variable q4, since none of the compound 
labels {q3-2, q4-2} and {q3-2, q4-3} satisfy constraint C34. 

q4 ≠ 1,4 

1 1
1 1
1 1

q2 ≠ 1,2 

q3 ≠ 1,3 



12 October 2015 Constraint Programming 117 

Arc - Consistency 

Example (cont.): 

-  Since none of the values from the domain of q3 has support in variables  q2 
and q4, maintenance of arc-consistency empties the domain of q3!  

 

 

 

-  Hence, maintenance of arc-consistency not only prunes the domain of the 
variables but also antecipates the detection of unsatisfiability in variable q3 ! 

-  In this case, backtracking of q1=1 may be started even before the enumeration 
of variable q2. 

-  Given the good trade-of between pruning power and simplicity of arc-
consistency, a number of algorithms have been proposed to maintain it. 

q4 ≠ 1,4 

1 1
1 1
1 1

q2 ≠ 1,2 

q3 ≠ 1,3 



12 October 2015 Constraint Programming 118 

Path-Consistency 

-  The following constraint network is obviously inconsistent: 

-  Nevertheless, it is arc-consistent: every binary constraint of difference ( ≠ ) is 
arc-consistent whenever the constraint variables have at least 2 elements in 
their domains. 

-  However, is is not path-consistent: no label {<a-va>, <b-vb>} that is consistent 
(i.e. does not violate any constraint) can be extended to the third variable (c). 

{<a-1>, <b-2>}   → c ≠ 1, 2       ;       {<a-1>, <b-2>} → c ≠1, 2  

-  This property is captured by the notion of path-consistency. 

 

1 , 2 

1 , 2 1 , 2 

≠ 

≠ 

≠ 

a 

b c 
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Path-Consistency 

Definition (Path Consistency): 

A constraint satisfaction problem is path-consistent if,  

•  It is arc-consistent; and 

•  Every consistent 2-compound label {xi-vi, xij-vj,} can be extended to a 
consistent label with a third variable xk ( k ≠ i and k ≠j }. 

The second condition is more easily understood  as 

•  For every compound label {xi-vi, xij-vj,}  there must be a value vk that 
supports {xi-vi, xij-vj,}, i.e. the compound label {xi-vi, xj-vj, xk-vk} satisfies 
constraints Cij, Cik, and Ckj. 
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Path-Consistency 

Example:  

-  By enforcing path consistency it is possible to avoid backtracking in the 4-
Queens problem.  

-  In fact, q1-1 has only two supports in variable q3,  namely q3-2 and q3-4. 

However: 

-  <q1-1, q3-2> cannot be extended to variable q4 

-  <q1-1, q3-4> cannot be extended to variable q2 

-  Hence, q1-1 can be safely removed from the domain  of variable q1. 

-  With similar reasoning, it may be shown that none of the corners, and none of 
the centre positions can have a queen.  
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Path-Consistency 

-  In general, and despite the previous example, maintaining path consistency does 
not prune the domain of a variable, but rather “forbids” compound labels with 
cardinality 2.  

-  This means that imposing arc-consistency on variables xi and xj through variable 
xk, will tighten the (possible non-existing) constraint between xi and xj. 

-  In the example, a constraint of 
equality is imposed on variables b 
and  c, because the compound labels 
{ b-1 , c-1 } and { b-2 , c-2 } cannot be 
extended to variable a. 

1 , 2 

1 , 2 1 , 2 

≠ ≠ 
a 

b c 

1 , 2 

1 , 2 1 , 2 

≠ 

= 

≠ 
a 

b c 

Before path 
consistency 

After path 
consistency 


