
12 October 2015 Constraint Programming 1

Search and Optimisation

-  An overview

• Backtrack Search and Constraint Propagation

• Constraint Networks

• Consistency Criteria

• Node-, Arc- and Path-consistency

12 October 2015 Constraint Programming 2

Constraint Programming

Constraint Programming (and Languages) is driven by a number of goals

-  Expressivity

-  Constraint Languages should be able to easily specify the variables,
domains and constraints (e.g. conditional, global, etc...);

-  Declarative Nature

-  Ideally, programs should specify the constraints to be solved, not the
algorithms used to solve them

-  Efficiency

-  Solutions should be found as efficiently as possible, i.e. with the
minimum possible use of resources (time and space).

These goals are partially conflicting goals and have led to the various
developments in this research and development area.

12 October 2015 Constraint Programming 3

Search Methods – Pure Backtracking

-  The same specification can lead to different search strategies when sequentially
assigning values to variables.

-  The simplest backtracking strategy sees constraints in a passive form:

§  Whenever a variable is assigned a variable, the constraints whose variables
are assigned variables are checked for satisfaction

§  If this is not the case, the search backtracks (chronological backtrack).

-  This is a typical generate and test procedure

§  Firstly, values are generated

§  Secondly, the constraints are tested for satisfaction.

-  Of course, tests should be done as soon as possible, i.e. a constraint is
checked whenever all its variables are assigned values.

-  This procedure is illustrated in the 8-queens problem.

4

Backtracking

Tests 0 Backtracks 0
12 October 2015 Constraint Programming

5

Backtracking

Tests 0 +1 = 1 Backtracks 0

Q1 \= Q2, L1+Q1 \= L2+Q2, L1+Q2 \= L2+Q1.

12 October 2015 Constraint Programming

6

Backtracking

Q1 \= Q2, L1+Q1 \= L2+Q2, L1+Q2 \= L2+Q1.

Tests 1 +1 = 2 Backtracks 0

12 October 2015 Constraint Programming

7

Backtracking

Q1 \= Q2, L1+Q1 \= L2+Q2, L1+Q2 \= L2+Q1.

Tests 2 +1 = 3 Backtracks 0
12 October 2015 Constraint Programming

8

Backtracking

Tests 3 +1 = 4 Backtracks 0
12 October 2015 Constraint Programming

9

Backtracking

Tests 4 +2 = 6 Backtracks 0
12 October 2015 Constraint Programming

10

Backtracking

Tests 6 + 1 = 7 Backtracks 0
12 October 2015 Constraint Programming

11

Backtracking

Tests 7 + 2 = 9 Backtracks 0
12 October 2015 Constraint Programming

12

Backtracking

Tests 9 + 2 = 11 Backtracks 0
12 October 2015 Constraint Programming

13

Backtracking

Tests 11 + 1 + 3 = 15 Backtracks 0
12 October 2015 Constraint Programming

14

Backtracking

Tests 15+1+4+2+4 = 26 Backtracks 0
12 October 2015 Constraint Programming

15

Backtracking

Tests 26+1 = 27 Backtracks 0
12 October 2015 Constraint Programming

16

Backtracking

Tests 27 + 3 = 30 Backtracks 0
12 October 2015 Constraint Programming

17

Backtracking

Tests 30+2 = 32 Backtracks 0
12 October 2015 Constraint Programming

18

Backtracking

Tests 32 + 4 = 36 Backtracks 0
12 October 2015 Constraint Programming

19

Backtracking

Tests 36 + 3 = 39 Backtracks 0
12 October 2015 Constraint Programming

20

Backtracking

Tests 39 + 1 = 40 Backtracks 0
12 October 2015 Constraint Programming

21

Backtracking

Tests 40 + 2 = 42 Backtracks 0
12 October 2015 Constraint Programming

22

Backtracking

Tests 42 + 3 = 45 Backtracks 0
12 October 2015 Constraint Programming

23

Backtracking

Tests 45 Backtracks 0+ 1 = 1

Q6 Fails

Backtracks
to

Q5

12 October 2015 Constraint Programming

24

Backtracking

Tests 45 Backtrackings 1
12 October 2015 Constraint Programming

25

Backtracking

Tests 45 + 1 = 46 Backtracks 1
12 October 2015 Constraint Programming

26

Backtracking

Tests 46 + 2 = 48 Backtracks 1
12 October 2015 Constraint Programming

27

Backtracking

Tests 48 + 3 = 51 Backtracks 1
12 October 2015 Constraint Programming

28

Backtracking

Tests 51 + 4 = 55 Backtracks 1
12 October 2015 Constraint Programming

29

Backtracking

Tests 55+1+3+2+4+3+1+2+3 = 74 Backtracks 1+2 = 3

Q6 Fails

Backtracks
to

Q5

and next to

Q4

12 October 2015 Constraint Programming

30

Backtracking

Tests 74+2+1+2+3+3= 85 Backtracks 3
12 October 2015 Constraint Programming

31

Backtracking

Tests 85 + 1 + 4 = 90 Backtracks 3
12 October 2015 Constraint Programming

32

Backtracking

Tests 90 +1+3+2+5 = 101 Backtracks 3
12 October 2015 Constraint Programming

33

Backtracking

Tests 101+1+5+2+4+3+6= 122 Backtracks 3
12 October 2015 Constraint Programming

34

Backtracking

Tests 122+1+5+2+6+3+6+4+1= 150 Backtracks 3+1=4

Q8 Fails

Backtracks
to

Q7

12 October 2015 Constraint Programming

35

Backtracking

Tests 150+1+2= 153 Backtracks 4+1=5

Q7 Fails

Backtracks
to

Q6

12 October 2015 Constraint Programming

36

Backtracking

Tests 153+3+1+2+3= 162 Backtracks 5+1=6

Q6 Fails

Backtracks
to

Q5

12 October 2015 Constraint Programming

37

Backtracking

Tests 162+2+4= 168 Backtracks 6
12 October 2015 Constraint Programming

38

Backtracking

Tests 168+1+3+2+5+3+1+2+3= 188 Backtracks 6+1 = 7

Q6 Fails

Backtracks
to

Q5

12 October 2015 Constraint Programming

39

Backtracking

Tests 188+1+2+3+4= 198 Backtracks 7+1=8

Q5 Fails

Backtracks
to

Q4

12 October 2015 Constraint Programming

40

Backtracking

Tests 198 + 3 = 201 Backtracks 8
12 October 2015 Constraint Programming

41

Backtracking

Tests 201+1+4 = 206 Backtracks 8
12 October 2015 Constraint Programming

42

Backtracking

Tests 206+1+3+2+5 = 217 Backtracks 8
12 October 2015 Constraint Programming

43

Backtracking

Tests 217+1+5+2+5+3+6 = 239 Backtracks 8
12 October 2015 Constraint Programming

44

Backtracking

Tests 239+1+5+2+4+3+6+7+7= 274 Backtracks 8+1 = 9

Q8 Fails

Backtracks
to

Q7

12 October 2015 Constraint Programming

45

Backtracking

Tests 274+1+2= 277 Backtracks 9+1=10

Q7 Fails

Backtracks
to

Q6

12 October 2015 Constraint Programming

46

Backtracking

Tests 277+3+1+2+3= 286 Backtracks 10+1=11

Q6 Fails

Backtracks
to

Q5

12 October 2015 Constraint Programming

47

Backtracking

Tests 286+2+4= 292 Backtracks 11
12 October 2015 Constraint Programming

48

Backtracking

Tests 292+1+3+2+5+3+1+2+3= 312 Backtracks 11+1=12

Q6 Fails

Backtracks
to

Q5

12 October 2015 Constraint Programming

49

Backtracking

Tests 312+1+2+3+4= 322 Backtracks 12+2=14

Q5 Fails

Backtracks
to

Q4

and next to

Q3

12 October 2015 Constraint Programming

50

Backtracking

Tests 322 + 2 = 324 Backtracks 14

Q1 = 1

Q2 = 3

Q3 = 5

Impossible !

12 October 2015 Constraint Programming

12 October 2015 Constraint Programming 51

Search Methods (2) – Backtracking + Propagation

-  A more efficient backtracking search strategy sees constraints as active
constructs:

§  Whenever a variable is assigned a variable, the consequences of such
assignment are taken into account to narrow the possible values of the
variables not yet assigned.

§  If for one such variable there are no values to chose from, then a failure
occurs and the search backtracks.

-  This is a typical test and generate procedure

§  Firstly, values are tested to check their possible use.

§  Secondly, the values are assigned to the variables.

-  Clearly, the reasoning that is done should have the adequate complexity
otherwise the gains obtained from the narrowing of the search space are offset
by the costs of such narrowing.

-  This procedure is illustrated again with the 8-queens problem.

52

Search Methods (2) – Backtracking + Propagation

Tests 0 Backtracks 0
12 October 2015 Constraint Programming

53

Search Methods (2) – Backtracking + Propagation

1 1

1

1

1

1

1 1

1

1

1

1

1

1
Tests 8 * 7 = 56 Backtracks 0

Q1 #\= Q2, L1+Q1 #\= L2+Q2, L1+Q2 #\= L2+Q1.

12 October 2015 Constraint Programming

54

Search Methods (2) – Backtracking + Propagation

1 1

1

1

1

1

1 1

1

1

1

1

1

1 2

2

2

2

2

2

2

2

2

2

2

Tests 56 + 6 * 6 = 92 Backtracks 0
12 October 2015 Constraint Programming

55

Search Methods (2) – Backtracking + Propagation

1 1

1

1

1

1

1 1

1

1

1

1

1

1 2

2

2

2

2

2

2

2

2

2

2

3

3

3

3

3

3 3

Tests 92 + 21 = 113 Backtracks 0
12 October 2015 Constraint Programming

12 October 2015 Constraint Programming 56

Search Methods(2a) – B+P w/Heuristics

-  In both types of backtrack search (pure backtracking as well as in backtracking +
propagation) there is a need for heuristics.

-  After all, in decision problems with n variables, a perfect heuristics would find a
solution (if there is one) in exactly n steps (i.e. with n decisions – polinomial time).

-  Of course, there are no such perfect heuristics for non-trivial problems (this would
imply P = NP, a quite unlikely situation), but good heuristics can nonetheless
significantly decrease the search space. Typically a heuristics consists of

§  Variable selection: The selection of the next variable to assign a value

§  Value selection: Which value to assign to the variable

-  The adoption of a backtrack + propagation search method allows better heuristics
to be used, that are not available in pure backtrack search methods.

-  In particular a very simple heuristics, first-fail, is often very useful: whenever a
variable is restricted to take a single value, select that variable and value.

-  This procedure is again illustrated with the 8-queens problem.

57

Search Methods(2a) – B+P w/Heuristics

1 1

1

1

1

1

1 1

1

1

1

1

1

1 2

2

2

2

2

2

2

2

2

2

2

3

3

3

3

3

3 3

Tests 92 + 21 = 113 Backtracks 0

Which
queen to

label?

12 October 2015 Constraint Programming

58

Search Methods(2a) – B+P w/Heuristics

1 1

1

1

1

1

1 1

1

1

1

1

1

1 2

2

2

2

2

2

2

2

2

2

2

3

3

3

3

3

3 3

Tests 92 + 21 = 113 Backtracks 0

Q6

may only
take value

 4

12 October 2015 Constraint Programming

59

Search Methods(2a) – B+P w/Heuristics

1 1

1

1

1

1

1 1

1

1

1

1

1

1 2

2

2

2

2

2

2

2

2

2

2

3

3

3

3

3

3 3

6

6

6

6

6 6
Tests 113+3+3+3+4 = 126 Backtracks 0

12 October 2015 Constraint Programming

60

Search Methods(2a) – B+P w/Heuristics

1 1

1

1

1

1

1 1

1

1

1

1

1

1 2

2

2

2

2

2

2

2

2

2

2

3

3

3

3

3

3 3

6

6

2

6

6 6
Tests 126 Backtracks 0

Q8

may only
take value

 7

12 October 2015 Constraint Programming

61

Search Methods(2a) – B+P w/Heuristics

1 1

1

1

1

1

1 1

1

1

1

1

1

1 2

2

2

2

2

2

2

2

2

2

2

3

3

3

3

3

3 3

6

6

2

6

6 6
Tests 126 Backtracks 0

12 October 2015 Constraint Programming

62

Search Methods(2a) – B+P w/Heuristics

1 1

1

1

1

1

1 1

1

1

1

1

1

1 2

2

2

2

2

2

2

2

2

2

2

3

3

3

3

3

3 3

6

6

2

6

6 6

8

8

Tests 126+2+2+2=132 Backtracks 0
12 October 2015 Constraint Programming

63

Search Methods(2a) – B+P w/Heuristics

1 1

1

1

1

1

1 1

1

1

1

1

1

1 2

2

2

2

2

2

2

2

2

2

2

3

3

3

3

3

3 3

6

6

2

6

6 6

8

8

Tests 132 Backtracks 0

Q4

may only
take value

 8

12 October 2015 Constraint Programming

64

Search Methods(2a) – B+P w/Heuristics

1 1

1

1

1

1

1 1

1

1

1

1

1

1 2

2

2

2

2

2

2

2

2

2

2

3

3

3

3

3

3 3

6

6

2

6

6 6

8

8

Tests 132 Backtracks 0
12 October 2015 Constraint Programming

65

Search Methods(2a) – B+P w/Heuristics

1 1

1

1

1

1

1 1

1

1

1

1

1

1 2

2

2

2

2

2

2

2

2

2

2

3

3

3

3

3

3 3

6

6

2

6

6 6

8

8

4

Tests 132+2+1=135 Backtracks 0
12 October 2015 Constraint Programming

66

Search Methods(2a) – B+P w/Heuristics

1 1

1

1

1

1

1 1

1

1

1

1

1

1 2

2

2

2

2

2

2

2

2

2

2

3

3

3

3

3

3 3

6

6

2

6

6 6

8

8

4

Tests 135 Backtracks 0

Q5

may only
take value

 2

12 October 2015 Constraint Programming

67

Search Methods(2a) – B+P w/Heuristics

1 1

1

1

1

1

1 1

1

1

1

1

1

1 2

2

2

2

2

2

2

2

2

2

2

3

3

3

3

3

3 3

6

6

2

6

6 6

8

8

4

Tests 135 Backtracks 0
12 October 2015 Constraint Programming

68

Search Methods(2a) – B+P w/Heuristics

1 1

1

1

1

1

1 1

1

1

1

1

1

1 2

2

2

2

2

2

2

2

2

2

2

3

3

3

3

3

3 3

6

6

2

6

6 6

8

8

4

5

Tests 135+1=136 Backtracks 0
12 October 2015 Constraint Programming

69

Search Methods(2a) – B+P w/Heuristics

1 1

1

1

1

1

1 1

1

1

1

1

1

1 2

2

2

2

2

2

2

2

2

2

2

3

3

3

3

3

3 3

6

6

2

6

6 6

8

8

4

5

Tests 136 Backtracks 0
12 October 2015 Constraint Programming

70

Search Methods(2a) – B+P w/Heuristics

1 1

1

1

1

1

1 1

1

1

1

1

1

1 2

2

2

2

2

2

2

2

2

2

2

3

3

3

3

3

3 3

6

6

2

6

6 6

8

8

4

5

Tests 136 Backtracks 0+1=1

Q7

may take NO
value

 Failure!

Backtracks

... to Q3 !

12 October 2015 Constraint Programming

71

Search Methods(2a) – B+P w/Heuristics

1 1

1

1

1

1

1 1

1

1

1

1

1

1 2

2

2

2

2

2

2

2

2

2

2

3

3 3

3

3

3

3

3

Tests 136 Backtracks 1

3

Tests
136

(324)

Backtracks
1

(14)

Q1 = 1

Q2 = 3

Q3 = 5

Impossible !

12 October 2015 Constraint Programming

12 October 2015 Constraint Programming 72

Search Methods – B+P w/Heuristics

-  The adoption of constraint propagation and backtrack is more efficient for three
main reasons:

§  Early detection of Failure:

•  In this case, after placing queens Q1 = 1, Q2 = 3 and Q3 = 5, a failure is
detected without any backtracking.

§  Relevant backtracking:

•  Although a failure is detected in Q7, backtracking is done to Q3, and to
none of the other queens (Q4, Q5, Q6 and Q8, that are not relevant).

•  With pure backtracking many backtracks were done to undo choices in
these queens.

§  Heuristics:

•  Constraint Propagation makes it easy to adopt heuristics based on the
remaining values of the unassigned variables.

12 October 2015 Constraint Programming 73

Constraints: Basic Concepts

-  Before addressing concepts and definitions we will informally see how this type
of applications can be programmed in COMET.

-  COMET is an Object Oriented language, with a syntax similar to JAVA, but with
special classes and methods to deal with
§  CP - Contraint Programming; and
§  LS - Constrained Local Search

-  In COMET, a CSP (Constraint Satisfaction Problem) is typically solved in CP
with a program with the following structure

import cotfd;

Solver<CP> cp();
 //declare the variables
solve<cp> {
 //post the constraints }
using {
 //non deterministic search }

12 October 2015 Constraint Programming 74

Constraints: Basic Concepts

-  Solver<CP> is a class with methods to associate variables and constraints as
well as nondeterministic search. The constraints are declared within the
solve<cp>{ } section.

-  In this case, only a single solution is obtained for the CSP. There are two
alternatives for this section:

-  To obtain all solutions of a CSP problem:

-  To obtain an optimal solution of a CSOP (Constraint Satisfaction and
Optimisation Problem)

solve<cp> { // post the constraints }

minimize<cp>
 //expression or variable
subject to
 { //post the constraints }

solveall<cp> {post the constraints }

12 October 2015 Constraint Programming 75

Constraints: Basic Concepts

-  Variables are objects, declared by identifying their
§  Type,
§  Domain, and
§  Associated solver

-  We will be mostly concerned with Finite Domain (FD) variables, whose type is
var<CP>{int}, and have a domain that restricts the values that can appear in a
solution of the problem.

-  Typically the domain is defined as a range of integers, as in

-  Alternatively, the domain can be a set of integers

-  Ranges are defined over integers, sets over integers or enumerated

var<CP>{int} x(cp,1..10);

set{int} dom = {1,3,7};
var<CP>{int} y(cp,dom);

enum country = {Belgium, USA, France, Portugal};
var<CP>{country} z(cp,country);

12 October 2015 Constraint Programming 76

Constraints: Basic Concepts

-  FD Boolean variables are a special case of FD variables. They could be
regarded as numeric 0/1 Fd variable (and are often recast as such) but have
different syntax. As expected, Its domain is the set {false, true}.

-  In most cases, it is convenient to organize FD (or basic) variables in array data
structures.

-  As expected array data structures are usually associated with loop constructs
for flow control, namely the forall construct.

var<CP>{bool} b(cp);

range Rng = 1..5;
range Dom = 1..10;
var<CP>{int} a[Rng](cp,Dom);

12 October 2015 Constraint Programming 77

Constraints: Basic Concepts

-  Many types of constraints are defined in the language as primitives. They
belong to the class constraint and are declared in a solver with its post method.

-  The most common constraints are arithmetic constraints, imposing a relation
(==, !=, >, >=, <, <=) on arithmetic expressions built over CP and basic
variables and values with the arithmetic operators +, -, *, / (integer division)
and % (modulo) .

-  Usually, a problem is defined as a conjunction of constraints. Nevertheless
other logical combinations of constraints are often possible to define, not only
conjunctive, but also disjunctive, conditional and equivalence constraints).

int a = 4;
cp.post(x-a > y+2) ;

int a = 4;
cp.post((x > y) && (x > z)) ;
cp.post((x > y) || (x > z)) ;
cp.post((x > y) => (x > z)) ;
cp.post((x > y) == (x > z)) ;

12 October 2015 Constraint Programming 78

Constraints: Basic Concepts

-  COMET supports standard operators, such as if, for and while, along with
more advanced loop control capabilities, namely the forall construct.

-  Note that if, while and for conditions must be decided at compile time, and may
not contain FD variables. So the following snipet is valid

 … but not

-  The reason is simple: The constructs are meant to post the relevant constraints,

and these must be determined before a solution is obtained (because it
depends on the constraints that were posted!).

var<CP>{int} a (cp,Dom);
int i = 1;
if (i <= n) cp.post(a == i+1);
else cp.post(a == i-1);

var<CP>{int} a (cp,Dom);
var<CP>{int} b (cp,Dom);
if (b <= n) cp.post(a == i+1);
else cp.post(a == i-1);

12 October 2015 Constraint Programming 79

Constraints: Basic Concepts

-  Of course, conditional constraints may be used for this purpose. Instead of the
invalid declaration

… a valid declaration obeying to the same “logic” can be made with conditional
constraints

var<CP>{int} a (cp,Dom);
var<CP>{int} b (cp,Dom);
if (b <= n) cp.post(a == i+1);
else cp.post(a == i-1);

var<CP>{int} a (cp,Dom);
var<CP>{int} b (cp,Dom);
cp.post((b <= n) => (a == i+1));
cp.post(!(b <= n) => (a == i-1));

12 October 2015 Constraint Programming 80

Constraints: Basic Concepts

-  The forall construct in COMET can be associated to universal quantification
and is usually used with array data structures, as in

-  Special aggregation operators (sum and prod) also exist implementing the
corresponding mathematical operations. For example,

… is equivalent but more efficient than the iterated sum below

var<CP>{int} a[Rng] (cp,Dom);
forall (i in Rng) cp.post(a[i] == …);

var<CP>{int} a[1..10] (cp,Dom);
cp.post(x == sum(i in 1..10) a[i]);

var<CP>{int} a[1..10] (cp,Dom);
var<CP>{int} s[2..10] (cp,Dom);
cp.post(s[1] == a[1]);
forall(i in 2..10) (s[i] = s[i-1]+ a[i]);
cp.post(x == s[i]);

12 October 2015 Constraint Programming 81

Constraints: Basic Concepts

-  Many useful constraints are not easy to decompose into simpler arithmetic and
logical constraints.

-  Even when they are, there are some specialised algorithms that achieve better
propagation.

-  These are usually known as Global Constraints, and COMET supports a
number of those that have been proposed in the literature:

•  Element
•  Table
•  Alldifferent
•  Cardinality
•  Knapsack
•  Circuit
•  Sequence
•  Stretch
•  Regular
•  Cumulative

-  Or even with explicit nested loops

12 October 2015 Constraint Programming 82

Constraints: Basic Concepts

-  We finish this brief introduction to COMET with the nondeterministic search
that occurs in the using {…} section.

-  In this section a non-deterministic search is declared, where alternative values
for the value of a variable are explored in some order and backtracked if they
lead to failure.

-  This is specified in Comet with the tryall<cp> method, that tries all values of the
domain of some variable in some arbitrary order (actually, increasing)

-  That is equivalent to the call of function label/1.

var<CP>{int} x(cp,Dom);
...
tryall<cp>(v in Dom) cp.label(x,v);

var<CP>{int} x(cp,Dom);
...
label(x);

12 October 2015 Constraint Programming 83

Constraints: Basic Concepts

-  Of course, many variables may exist that must be labelled. Often there the
variables to label are in one array, x. In this case, one may label all elements of
the array in increasing order as in (again equivalent to label(x).)

equivalent to

-  A more efficient policy (heuristics) is to label variables by increasing number of
elements in their domain as in

-  This policy is so common that there is a built in function equivalent to it, namely

var<CP>{int} x[Rng](cp,Dom);
...
forall(i in Rng)
 tryall<cp>(v in Dom) cp.label(x,v); }

var<CP>{int} x[Rng](cp,Dom);
...
forall(i in Rng) by (x[i].getSize())
 tryall<cp>(v in Dom) cp.label(q[i],v);

 label(x);

 labelFF(x);

12 October 2015 Constraint Programming 84

Constraints: Basic Concepts

-  Finally to label two or more (arrays of) variables, the labeling may be done with
many different policies:

-  In sequence

… or interleaving

… or leaving the choice of order to the solver

… or even with more sophisticated heuristics.

var<CP>{int} x[Rng](cp,Dom);
var<CP>{int} y[Rng](cp,Dom);
...
 label(x);
 label(y);

...
forall(i in Rng) {
 tryall<cp>(v in Dom) cp.label(x[i],v);
 tryall<cp>(v in Dom) cp.label(y[i],v);
}

...
label(cp)

...
labelFF(cp)

12 October 2015 Constraint Programming 85

Constraints: Other Languages

-  Comet is a language that supports both CP (Complete Backtrack Search) and CBLS
(Constrained-Based Local Search) and is thus adopted in the course, although not
exclusively.

-  The major problem with this language is that it is being discontinued, and replaced
(soon?) by Objective-CP (designed by the same authors – Pascal Van Hentenryck
and Laurent Michel.

-  Meanwhile, the language that is becoming quite standard, for CP alone, is Zinc /
Minizinc.

-  In particular, it provides an interface (Flat-Zinc) that almost all existing CP solvers can
support (Gecode, Choco, SICStus, … CaSPER).

-  This makes it possible to test solvers in a competition held annually with the CP
conferences.

-  However, heuristics cannot be fully specified (a number of annotations are available
but they are not sufficent for some problems) and no support for local search is
available.

… or interleaving

12 October 2015 Constraint Programming 86

Constraints: Other Languages

int: n = 24;

array [1..n] of var 1..n: q;

include "alldifferent.mzn”;

constraint alldifferent(q); % rows
constraint alldifferent(i in 1..n)(q[i] + i-1); % / diagonal
constraint alldifferent(i in 1..n)(q[i] + n-i); % \ diagonal

solve :: int_search(q, first_fail,indomain_min, complete)
 satisfy;

output ["8 queens, CP version:\n"] ++

 [if fix(q[i]) = j then "Q " else ". " endif ++
 if j = n then "\n" else "" endif
 | i, j in 1..n
];

-  The declarative nature of ZINC is easily illustrated with the n-queens problem:

12 October 2015 Constraint Programming 87

Constraints: Other Languages

import cotfd;
int t0 = System.getCPUTime();

int n = 1000; range S = 1..n;

Solver<CP> cp();
 var<CP>{int} q[i in S](cp,S);

solve<cp> {
 cp.post(alldifferent(q));
 cp.post(alldifferent(all(i in S) q[i] + i));
 cp.post(alldifferent(all(i in S) q[i] - i));
}
using {
 forall(i in S) by(q[i].getSize())
 tryall<cp>(v in S) cp.label(q[i],v);
}

int t1 = System.getCPUTime();
cout << q << endl;
cout << " cpu time (ms) = " << t1-t0 <<endl;
cout << " number of fails = " << cp.getNFail() << endl;

 … which can be compared with the Comet version:

12 October 2015 Constraint Programming 88

Constraints: Basic Concepts

-  As discussed when searching for a solution CP interleaves propagation of
constraints with labelling, i.e.

-  It propagates all constraints, removing values from the domain of variables
that do not belong to a solution.

§  For example if variables X and Y have domain 1..8 and there is a
constraint X > Y, then their domains are pruned to X:2..8 and Y::1..7.

-  When no more propagation is possible (i.e. a fixpoint has been reached) , a
new variable is labelled (its domain reduced, usually to a single value) and
step 1 is repeated.

-  Of course, it is important that there is a good trade-off between the cost of
propagating constraints and the pruning that results from it.

-  To analyse such trade-off we will do a more theoretical and abstract discussion on
these issues and will discuss later more practical issues.

12 October 2015 Constraint Programming 89

Constraints: Basic Concepts

We start with some definitions and notation:

Definition (Domain of a Variable):

§  The domain of a variable is the set of values that can be assigned to that
variable.

-  Given some variable x, its domain will be usually referred to as dom(x) or,
simply, Dx.

-  Example: The N queens problem may be modelled by means of N variables,
x1 to xn, all with the domain from 1 to n.

 Dom(xi) = {1,2, ..., n} or xi :: 1..n.

-  Note: In this course we will deal with Finite Domains, i.e. domains that are
finite sets of values.

12 October 2015 Constraint Programming 90

Constraints: Basic Concepts

-  To formalise the notion of the state of a variable (i.e. its assignment with one of
the values in its domain) we have the following

Definition (Label):

§  A label is a Variable-Value pair, where the Value is one of the elements
of the domain of the Variable.

-  The notion of a partial solution, in which some of the variables of the problem
have already assigned values, is captured by the following

Definition (Compound Label):

§  A compound label is a set of labels with distinct variables.

12 October 2015 Constraint Programming 91

Constraints: Basic Concepts

-  We come now to the formal definition of a constraint

Definition (Constraint):

§  Given a set of variables, a constraint is a set of compound labels on
these variables.

-  Alternatively, a constraint may be defined simply as a relation, i.e. a subset of

the cartesian product of the domains of the variables involved in that
constraint.

-  For example, given a constraint Cijk involving variables Xi, Xj and Xk, then

Cijk ⊆ dom(Xi) x dom(Xj) x dom(Xk)

12 October 2015 Constraint Programming 92

Constraints: Basic Concepts

-  Given a constraint C, the set of variables involved in that constraint is denoted
by vars(C).

-  Simetrically, the set of constraints in which variable X participates is denoted
by cons(X).

-  Notice that a constraint is a relation, not a function, so that it is always Cij = Cji.

-  In practice, constraints may be specified by

•  Extension: through an explicit enumeration of the allowed compound
labels;

•  Intension: through some predicate (or procedure) that determines the
allowed compound labels.

12 October 2015 Constraint Programming 93

Constraints: Basic Concepts

-  For example, the constraint C13 involving Q1 and Q3 in the 4-queens problem,
may be specified

-  By extension (label form):

 C13 = {{Q1-1,Q3-2},{Q1-1,Q3-4},{Q1-2,Q3-1},{Q1-2,Q3-3},

 {Q1-3,Q3-2},{Q1-3,Q3-4},{Q1-4,Q3-1},{Q1-4,Q3-3}}.

 or, in tuple (relational) form, omitting the variables

 C13 = {<1,2>,<1,4>,<2,1>,<2,3>,<3,2>,<3,4>,<4,1>,<4,3>}.

-  By intension:

 C13 = (Q1 ≠ Q3) ∧ (1+Q1 ≠ 3+Q3) ∧ (3+Q1 ≠ 1+Q3).

12 October 2015 Constraint Programming 94

Constraints: Basic Concepts

Definition (Constraint Arity):

§  The constraint arity of some constraint C is the number of variables
over which the constraint is defined, i.e. the cardinality of the set Vars(C).

-  Despite the fact that constraints may have an arbitrary arity, an important
subset of the constraints is the set of binary constraints.

-  The importance of such constraints is two-fold

§  All constraints may be converted into binary constraints

§  A number of concepts and algorithms are appropriate for these
constraints.

12 October 2015 Constraint Programming 95

Constraints: Basic Concepts

Definition (Constraint Satisfaction 1):

§  A compound label satisfies a constraint if their variables are the same
and if the compound label is a member of the constraint.

-  In practice, it is convenient to generalise constraint satisfaction to compound
labels that strictly contain the constraint variables.

Definition (Constraint Satisfaction 2):

§  A compound label satisfies a constraint if its variables contain the
constraint variables and the projection of the compound label to these
variables is a member of the constraint.

12 October 2015 Constraint Programming 96

Constraints: Basic Concepts

Definition (Constraint Satisfaction Problem):

 A constraint satisfaction problem is a triple <X, D, C> where

§  X is the set of variables of the problem

§  D is the domain(s) of its variables

§  C is the set of constraints of the problem

Definition (Problem Solution):

 A solution to a Constraint Satisfaction Problem P: <X, D, C>, is a compound
label over the variables X of the problem, which satisfies all constraints in C.

12 October 2015 Constraint Programming 97

Constraints: Basic Concepts

Definition (Constraint Satisfaction and Optimisation Problem):

 A constraint satisfaction problem is a tuple < X, D, C, F > where

§  X is the set of variables of the problem

§  D is the domain(s) of its variables

§  C is the set of constraints of the problem

§  F is a function on the variables of the problem

Definition (Problem Solution):

 S is a solution of a CSOP P: <X, D, C, F >, iff:

§  S is a solution of the corresponding CSP P’: <X, D, C>;

§  No other solution S’ has a better value for function F

12 October 2015 Constraint Programming 98

Constraints: Basic Concepts

-  For convenience, the constraints of a problem may be considered as forming a
special constraint graph.

Definition (Constraint Graph or Constraint Network):

 The Constraint Graph or Constraint Network of a binary constraint
satisfaction problem is defined as follows

§  There is a node for each of the variables of the problem.

§  For each non-trivial constraint of the problem, involving one or two
variables, the graph contains an arc linking the corresponding nodes.

-  When the problems include constraints with arbitrary arity, the Constraint
Network may be formed after converting these constraints on its binary
equivalent.

12 October 2015 Constraint Programming 99

Constraints: Basic Concepts

Example:

 The 4 queens problem may be specified by the following constraint network:

q1 in 1..4

q4 in 1..4

q3 in 1..4 q2 in 1..4

C12

C23

C14

C24
C34

C13

 C13:
 <1,2>, <1,4>, <2,1>,
 <2,3>, <3,2>, <3,4>,
 <4,1>, <4,3>

 Cij:
 qi \= qj
 qi + i \= qj + j
 qi - i \= qj - j

12 October 2015 Constraint Programming 100

Constraints: Basic Concepts

-  An important issue to consider in solving a constraint satisfaction problem is
the existence of redundant values and labels in its constraints.

Definition (Redundant Value):
§  A value in the domain of a variable is redundant, if it does not appear in

any solution of the problem.

Definition (Redundant Label):
§  A compound label of a constraint is redundant if it is not the projection

to the constraint variables of a solution to the whole problem.

-  Redundant values and labels increase the search space uselessly, and should
thus be avoided. There is no point in testing a value that does not appear in
any solution !

12 October 2015 Constraint Programming 101

Constraints: Basic Concepts

-  An important issue to consider in solving a constraint satisfaction problem is
the existence of redundant values and labels in its constraints.

Definition (Redundant Value):

§  A value in the domain of a variable is redundant, if it does not appear in
any solution of the problem.

Example: The 4 queens problem only admits two solutions:

 <2,4,1,3> and <3,1,4,2>.

-  Hence, values 1 and 4 are redundant in the domain of variables q1 and q4, and
values 2 and 3 are redundant in the domain of variables q2 and q3.

12 October 2015 Constraint Programming 102

Constraints: Basic Concepts

-  Redundant values and labels increase the search space useless, and should
thus be avoided (there is no point in testing a value that does not appear in any
solution !). Hence, the following definitions:

Definition (Equivalent Problems):

 Two problems P1 = <X1, D1, C1> and P2 = <X2, D2, C2> are equivalent iff they
have the same variables (i.e. X1 = X2) and the same set of solutions.

-  The “simplification” of a problem may also be formalised

Definition (Reduced Problem):

 A problem P=<X, D, C> is reduced to P’=<X’, D’, C’> if

§  P and P’ are equivalent;
§  The domains D’ are included in D; and

§  The constraints C’ are at least as restrictive as those in C.

12 October 2015 Constraint Programming 103

Complexity of Search

-  Clearly, the more a problem is reduced, the easier it is, in principle, to solve it.

-  Given a problem P = <X, D, C> with n variables x1, .., xn the potential search
space where solutions can be found (i.e. the leaves of the search tree with
compound labels {<x1-v1>, ..., <xn-vn>}) has cardinality

#S = #D1 * #D2 * ... * #Dn

-  Assuming identical cardinality (or some kind of average of the domains size)
for all the variable domains, (#Di = d) the search space has cardinality

#S = dn

 which is exponential on the “size” n of the problem.

12 October 2015 Constraint Programming 104

Complexity of Search

-  Given a problem with initial cardinality d of its variables, and a reduced
problem whose domains have lower cardinality d’ (<d) the size of the potential
search space also decreases exponentially!

S’/S = d’n / dn = (d’/d)n

-  Such exponential decrease may be very significant for “reasonably” large
values of n, as shown in the table.

10 20 30 40 50 60 70 80 90 100
7 6 4.6716 21.824 101.95 476.29 2225 10395 48560 226852 1E+06 5E+06
6 5 6.1917 38.338 237.38 1469.8 9100.4 56348 348889 2E+06 1E+07 8E+07
5 4 9.3132 86.736 807.79 7523.2 70065 652530 6E+06 6E+07 5E+08 5E+09
4 3 17.758 315.34 5599.7 99437 2E+06 3E+07 6E+08 1E+10 2E+11 3E+12
3 2 57.665 3325.3 191751 1E+07 6E+08 4E+10 2E+12 1E+14 7E+15 4E+17
d d'

S/S'
n

12 October 2015 Constraint Programming 105

Propagation in Search

-  The effort in reducing the domains must be considered within the general
scheme to solve the problem.

-  In Constraint (Logic) Programming, the specification of the constraints usually
precedes the enumeration of the variables.

Problem(Vars):-

 Declaration of Variables and Domains,

 Specification of Constraints,

 Labelling of the Variables.

-  In general, search is performed exclusively on the labelling of the variables.

-  The execution model alternates enumeration with propagation, making it
possible to reduce the problem at various stages of the solving process.

12 October 2015 Constraint Programming 106

Complexity of Search

-  In complete search methods, that deal with search through backtracking, the
solving method is constructive and incremental, whereby a compound label
is completed (constructive) throughout the solving process, one variable at a
time (incremental), until a solution is reached.

-  However, one must check that, at every step in the construction of a solution,
the resulting label still has the potential to reach a complete solution.

Definition (k-Partial Solution):

§  A k-partial solution of a constraint solving problem P = <X, D, C>, is a
compound label on a subset of k of its variables, Xk, that satisfies all the
constraints in C whose variables are included in Xk.

12 October 2015 Constraint Programming 107

Propagation in Search

-  Given a problem with n variables x1 to xn, and assuming a lexicographical variable/
value heuristics, the execution model follows the following pattern to incrementally
extend partial solutions until a complete solution is obtained:

Declaration of Variables and Domains,
Specification of Constraints,

 propagation, % reduction of the whole problem

% Labelling of Variables,

 label(x1), % variable/value selection with backtraking

 propagation, % reduction of problem {x2 ... xn}

 label(x2),

 propagation, % reduction of problem {x3 ... xn}

 ...

 label(xn-1)

 propagation, % reduction of problem {xn}

 label(xn)

12 October 2015 Constraint Programming 108

Complexity of Search

-  In practice, this potential narrowing of the search space has a cost involved in
finding the redundant values (and labels).

-  A detailed analysis of the costs and benefits in the general case is extremely
complex, since the process depends highly on the instances of the problem to
be solved.

-  However, it is reasonable to assume that the computational effort spent on
problem reduction is not proportional to the reduction achieved, becoming less
and less efficient.

-  After some point, the gain obtained by the reduction of the search space does
not compensate the extra effort required to achieve such reduction.

12 October 2015 Constraint Programming 109

Complexity of Search

•  Qualitatively, this process may be represented by means of the following graph

C
om

pu
ta

tio
na

l C
os

t

R - Reduction Cost

S- Search Cost

R+S
Combined Cost

Effort spent in solving the problem

Amount of Reduction Achieved

12 October 2015 Constraint Programming 110

Propagation: Consistency Criteria

-  Consistency criteria enable to establish redundant values in the variables
domains in an indirect form, i.e. requiring no prior knowledge on the set of
problem solutions.

-  Hence, procedures that maintain these criteria during the “propagation”
phases, will eliminate redundant values and so decrease the search space on
the variables yet to be enumerated.

-  For constraint satisfaction problems with binary constraints, the most usual
criteria are, in increasingly complexity order,

§  Node Consistency

§  Arc Consistency

§  Path Consistency

§  Consistency-i

12 October 2015 Constraint Programming 111

Node - Consistency

Definition (Node Consistency):

 A constraint satisfaction problem is node-consistent if no value on the
domain of its variables violates the unary constraints.

-  This criterion may seem both obvious and useless. After all, who would specify
a domain that violates the unary constraints ?!

-  However, this criterion must be regarded within the context of the execution
model that incrementally completes partial solutions. Constraints that were not
unary in the initial problem become so when one (or more) variables are
enumerated.

12 October 2015 Constraint Programming 112

Node - Consistency

Example:

-  After the initial posting of the
constraints, the constraint
network model at the right
represents the 4-queens
problem.

-  After enumeration of variable
Q1, i.e. X1=1, constraints C12,
C13 and C14 become unary !!

q1 in 1..4

q4 in 1..4

q3 in 1..4 q2 in 1..4

C12

C23

C14

C24
C34

C13

q4 in 1..4

q3 in 1..4 q2 in 1..4
C23

C24
C34

q2 ≠ 1, 2 q3 ≠ 1, 3

q4 ≠ 1, 4

12 October 2015 Constraint Programming 113

Node - Consistency

-  An algorith that maintains node consistency should remove from the domains
of the “future” variables the appropriate values.

-  Maintaining node consistency achieves the following domain reduction.

q4 in 2,3

q3 in 2,4 q2 in 3,4
C23

C24
C34

q2 ≠ 1,2 q3 ≠ 1,3

q4 ≠ 1,4

q4 ≠ 1,4

1 1
1 1
1 1

q2 ≠ 1,2

q3 ≠ 1,3

12 October 2015 Constraint Programming 114

Arc - Consistency

-  A more demanding and complex criterion of consistency is that of arc-
consistency

Definition (Arc Consistency):

A constraint satisfaction problem is arc-consistent if,

•  It is node-consistent; and

•  For every label xi-vi of every variable xi, and for all constraints Cij, defined
over variables xi and xj, there must exist a value vj that supports vi, i.e.
such that the compound label {xi-vi, xj-vj} satisfies constraint Cij.

12 October 2015 Constraint Programming 115

Arc - Consistency

Example:

-  After enumeration of variable q1=1, and making the network node-consistent,
the 4 queens problem has the following constraint network:

-  However, label q2-3 has no support in variable q3, since neither the compound
label {q2-3 , q3-2} nor {q2-3 , q3-4} will satisfy constraint C23.

-  Therefore, value 3 can be safely removed from the domain of q2.

q4 in 2,3

q3 in 2,4 Q2 in 3,4
C23

C24
C34

q2 ≠ 1,2 q3 ≠ 1,3

q4 ≠ 1,4

1 1
1 1
1 1 q4 ≠ 1,4

q2 ≠ 1,2

q3 ≠ 1,3

12 October 2015 Constraint Programming 116

Arc - Consistency

Example (cont.):

-  In fact, none (!) of the values of q3 has support in variables q2 and q4, as shown
below:

§  Label q3-4 has no support in variable q2, since none of the compound
labels {q2-3, q3-4} and {q2-4, q3-4} satisfy constraint C23.

§  Label q3-2 has no support in variable q4, since none of the compound
labels {q3-2, q4-2} and {q3-2, q4-3} satisfy constraint C34.

q4 ≠ 1,4

1 1
1 1
1 1

q2 ≠ 1,2

q3 ≠ 1,3

12 October 2015 Constraint Programming 117

Arc - Consistency

Example (cont.):

-  Since none of the values from the domain of q3 has support in variables q2
and q4, maintenance of arc-consistency empties the domain of q3!

-  Hence, maintenance of arc-consistency not only prunes the domain of the
variables but also antecipates the detection of unsatisfiability in variable q3 !

-  In this case, backtracking of q1=1 may be started even before the enumeration
of variable q2.

-  Given the good trade-of between pruning power and simplicity of arc-
consistency, a number of algorithms have been proposed to maintain it.

q4 ≠ 1,4

1 1
1 1
1 1

q2 ≠ 1,2

q3 ≠ 1,3

12 October 2015 Constraint Programming 118

Path-Consistency

-  The following constraint network is obviously inconsistent:

-  Nevertheless, it is arc-consistent: every binary constraint of difference (≠) is
arc-consistent whenever the constraint variables have at least 2 elements in
their domains.

-  However, is is not path-consistent: no label {<a-va>, <b-vb>} that is consistent
(i.e. does not violate any constraint) can be extended to the third variable (c).

{<a-1>, <b-2>} → c ≠ 1, 2 ; {<a-1>, <b-2>} → c ≠1, 2

-  This property is captured by the notion of path-consistency.

1 , 2

1 , 2 1 , 2

≠

≠

≠

a

b c

12 October 2015 Constraint Programming 119

Path-Consistency

Definition (Path Consistency):

A constraint satisfaction problem is path-consistent if,

•  It is arc-consistent; and

•  Every consistent 2-compound label {xi-vi, xij-vj,} can be extended to a
consistent label with a third variable xk (k ≠ i and k ≠j }.

The second condition is more easily understood as

•  For every compound label {xi-vi, xij-vj,} there must be a value vk that
supports {xi-vi, xij-vj,}, i.e. the compound label {xi-vi, xj-vj, xk-vk} satisfies
constraints Cij, Cik, and Ckj.

12 October 2015 Constraint Programming 120

Path-Consistency

Example:

-  By enforcing path consistency it is possible to avoid backtracking in the 4-
Queens problem.

-  In fact, q1-1 has only two supports in variable q3, namely q3-2 and q3-4.

However:

-  <q1-1, q3-2> cannot be extended to variable q4

-  <q1-1, q3-4> cannot be extended to variable q2

-  Hence, q1-1 can be safely removed from the domain of variable q1.

-  With similar reasoning, it may be shown that none of the corners, and none of
the centre positions can have a queen.

12 October 2015 Constraint Programming 121

Path-Consistency

-  In general, and despite the previous example, maintaining path consistency does
not prune the domain of a variable, but rather “forbids” compound labels with
cardinality 2.

-  This means that imposing arc-consistency on variables xi and xj through variable
xk, will tighten the (possible non-existing) constraint between xi and xj.

-  In the example, a constraint of
equality is imposed on variables b
and c, because the compound labels
{ b-1 , c-1 } and { b-2 , c-2 } cannot be
extended to variable a.

1 , 2

1 , 2 1 , 2

≠ ≠
a

b c

1 , 2

1 , 2 1 , 2

≠

=

≠
a

b c

Before path
consistency

After path
consistency

