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Constraint Propagation

The propagation process is a successive reduction of variables

domains by successive application of narrowing functions

associated with the constraints of the CCSP

The properties of the propagation algorithm are derived from the

properties of the narrowing functions used for pruning the domains

Narrowing Functions and their Properties

Narrowing Function. Let P=(X,D,C) be a CCSP. A narrowing function NF associated 

with a constraint c=(s,) (with cC) is a mapping between elements of 2
D
 with the 

following properties (where A is any element of the domain of NF): 

P1)  NF(A)A (contractance) 

P2) dA dNF(A)  d[s]  (correctness)  

A narrowing function must be able to narrow the domains

(contractance) without loosing solutions (correctness)
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Constraint Propagation

Monotonicity and Idempotency are additional properties common

to most of the narrowing functions used in interval constraints

Narrowing Functions and their Properties

Monotonicity and Idempotency. Let P=(X,D,C) be a CCSP. Let NF be a narrowing 

function associated with a constraint of C. Let A1 and A2 be any elements of the domain 

of NF. NF is respectively monotonic and idempotent iff the following properties hold:  

P3) A1  A2  NF(A1)  NF(A2) (monotonicity) 

P4) NF(NF(A1)) = NF(A1) (idempotency)  
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Constraint Propagation

An important concept related with the narrowing functions is the

notion of a fixed point

Fixed-Points of Narrowing Functions

Fixed-Points. Let P=(X,D,C) be a CCSP. Let NF be a narrowing function associated with 

a constraint of C. Let A be an element of DomainNF. A is a fixed-point of NF iff:  

NF(A) = A.  

The set of all fixed-points of NF within A, denoted Fixed-PointsNF(A), is the set: 

Fixed-PointsNF(A) = { Ai  DomainNF | Ai  A   NF(Ai) = Ai }  

The union of all fixed-points of a monotonic narrowing function

within A is a fixed-point which is the greatest fixed-point within A

Union of Fixed-Points. Let P=(X,D,C) be a CCSP. Let NF be a monotonic narrowing 

function associated with a constraint of C, and A an element of its domain. The union of 

all fixed-points of NF within A is the greatest fixed-point of NF in A: 

Fixed-PointsNF(A)Fixed-PointsNF(A)  

Ai Fixed-PointsNF(A) Ai  Fixed-PointsNF(A)  

2 Dec 2015



Lecture 5: Constraint Propagation and Consistency Enforcement 6

Constraint Propagation

The contraction resulting from applying a monotonic narrowing

function to A is limited by the greatest fixed-point within A:

Contraction Obtained by Applying a Narrowing Function

No value combination included in the greatest fixed-point may be

discarded in the contraction

If the monotonic narrowing function is idempotent, the result of the

contraction is precisely the greatest fixed-point within A

Contraction Applying a Narrowing Function. Let P=(X,D,C) be a CCSP. Let NF be a 

monotonic narrowing function associated with a constraint of C and A an element of its 

domain. The greatest fixed-point of NF within A is included in the element obtained by 

applying NF to A: 

Fixed-PointsNF(A)  NF(A)  

In particular, if NF is also idempotent then: 

Fixed-PointsNF(A) = NF(A)  
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Constraint Propagation

The propagation algorithm applies successively each narrowing

function until a fixed-point is attained:

Constraint Propagation Algorithm and its Properties

The algorithm is an adaptation of the original propagation

algorithm AC3 used for solving CSPs with finite domains

 

function prune(a set Q of narrowing functions, an element A of the domains lattice) 

 (1) S   ; 

 (2) while Q    do 

 (3)  choose NF  Q; 

 (4)  A’  NF(A) ; 

 (5)  if A’ =  then return  ; 

 (6)  P  { NF’  S: xRelevantNF’
 A[x]  A’[x] } ; 

 (7)  Q  Q  P ; S  S \ P ; 

 (8)  if A’ = A then Q  Q \ {NF} ; S  S  {NF} end if; 

 (9)  A  A’ ; 

 (10) end while 

 (11) return A ; 

end function 
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Constraint Propagation

From the properties of the narrowing functions it is possible to

prove that the propagation algorithm terminates and is correct

Constraint Propagation Algorithm and its Properties

If all the narrowing functions are monotonic then it is confluent

(the result is independent from the selection criteria) and computes

the greatest common fixed-point included in the initial domains

Properties of the Propagation Algorithm. Let P=(X,D,C) be a CCSP. Let set S0 be a set 

of narrowing functions (obtained from the set of constraints C). Let A0 be an element of 

DomainNF (where NFS0) and d an element of D (dD). The propagation algorithm 

prune(S0, A0) terminates and is correct: 

d  A0
 d is a solution of the CCSP   d  prune(S0, A0)   

If S0 is a set of monotonic narrowing functions then the propagation algorithm is 

confluent and computes the greatest common fixed-point included in A0.  

The selection criterion is irrelevant for the pruning obtained but it

may be very important for the efficiency of the propagation
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Consistency Enforcement

The fixed-points of the narrowing functions associated with a

constraint characterize a local property enforced on its variables

Such property is called local consistency:
depends only on the narrowing functions associated with one constraint (local)

defines the value combinations that are not pruned by them (consistent)

Local consistency is a partial consistency:
imposing it on a CCSP is not sufficient to remove all inconsistent value

combinations among its variables

Stronger higher order consistency requirements may then be

imposed establishing global properties over the variable domains
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Consistency Enforcement

A constraint is said to be arc-consistent wrt a set of value

combinations iff, within this set, for each value of each variable

there is a value combination that satisfy the constraint:

Arc-Consistency and Interval-Consistency

Local consistencies used for solving CCSPs are approximations of

arc-consistency, developed for solving CSPs with finite domains

Arc-Consistency. Let P=(X,D,C) be a CSP. Let c=(s,) be a constraint of the CSP. Let A 

be an element of the power set of D (A2
D
). The constraint c is arc-consistent wrt A iff: 

xis diA[xi] dA[s]  (d[xi]=di     d ) 

which, is equivalent to:  

 xis A[xi] = { d[xi] | d   A[s] } = xi


(A[s])  
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Consistency Enforcement

Example

B is not arc-consistent (ex: if x1=0.25 there is no value for x2 to satisfy c)

x2

x1

x1 = 0 x1 = x2

0 0.5 1.5

0.5

1.5

x
1



(B) = {0}[0.5,1.0] 

x
2



(B) = [0.5..1.0]

c  x1(x2-x1) = 0

P = (X,D,C) = (<x1,x2>,D1D2,{c}) 

D1=[-1..3] D2 =[-0.5..2] 

B =<[-0.5..2.5],[0.5..1.5]>

 = { <x1,x2>D | x1(x2-x1) = 0 }

c = (<x1,x2>,)

B

B=<[-0.5..1.5],[0.5..1.5]>

A=<[0..0],[0.5..1.5]><[0.5..1.5],[0.5..1.5]>

A is arc-consistent (x1

(A)=A[x1] and x2

(A)=A[x2])
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Consistency Enforcement

A constraint is interval-consistent wrt a set of value combinations

iff for each canonical F-interval representing a variable sub-

domain there is a value combination satisfying the constraint

Arc-Consistency and Interval-Consistency

In continuous domains, arc-consistency cannot be obtained in

general due to machine limitations for representing real numbers

The best approximation of arc-consistency wrt a set of real valued

combinations is the set approximation of each variable domain

Interval-Consistency. Let P=(X,D,C) be a CCSP. Let c=(s,) be a constraint of the 

CCSP (cC). Let A be an element of the power set of D (A2
D
). The constraint c is 

interval-consistent wrt A iff: 

xis  [a..a+]A[xi] dA[s]  (d[xi](a..a+)     d)   

[a]A[xi] dA[s]  (d[xi](a-..a+)     d) (where a is an F-number) 

which is equivalent to: 

  xis A[xi] = Sapx({ d[xi] | d    A[s] }) = Sapx(xi


(A[s]))  
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Consistency Enforcement

Example

B is not interval-consistent (if x1[0.250,0.251] there is no x2 satisfying c)

x2

x1

x1 = 0 x1 = x2

0 0.5 1.5

0.5

1.5

x
1



(B) = {0}[0.5,1.0] 

x
2



(B) = [0.5..1.0]

c  x1(x2-x1) = 0

P = (X,D,C) = (<x1,x2>,D1D2,{c}) 

D1=[-1..3] D2 =[-0.5..2] 

B =<[-0.5..2.5],[0.5..1.5]>

 = { <x1,x2>D | x1(x2-x1) = 0 }

c = (<x1,x2>,)

B

B=<[-0.5..1.5],[0.5..1.5]>

A=<[0..0],[0.5..1.5]><[0.5..1.5],[0.5..1.5]>

A is interval-consistent (Sapx(x1

(A))=A[x1] and Sapx(x2

(A))=A[x2])
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Consistency Enforcement

In practice, the enforcement of interval-consistency can be applied

only to small problems:
the number of non-contiguous F-intervals may grow exponentially, requiring

an unreasonably number of computations for each narrowing function.

Arc-Consistency and Interval-Consistency

Interval-consistency can only be enforced on primitive constraints

where the set approximation of the projection function can be

obtained using extended interval arithmetic

Structures (not F-intervals) must be considered for representing

each variable domain as a non-compact set of real values

The approximations of arc-consistency most widely used in

continuous domains assume the convexity of the variable domains,

in order to represent them by single F-intervals
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Consistency Enforcement

Hull-Consistency

Hull-consistency (or 2B-consistency) requires the satisfaction of

the arc-consistency property only at the bounds of the F-intervals

that represent the variable domains

A constraint is said to be hull-consistent wrt an F-box iff, for each

bound of the F-interval representing the domain of a variable there

is a value combination satisfying the constraint:

Hull-Consistency. Let P=(X,D,C) be a CCSP. Let c=(s,) be a constraint of the CCSP 

(cC). Let B be an F-box which is an element of the power set of D (B2
D
). The 

constraint c is hull-consistent wrt B iff: 

xis  dlB[s] (dl[xi][a..a+)  dl)    

drB[s] (dr[xi](b-..b]   dr) (where  B[xi]=[a..b]) 

which is equivalent to:  

xis B[xi] = Ihull({ d[xi] | d    B[s] }) = Ihull(xi


(B[s]))  
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Consistency Enforcement

Example

B is not hull-consistent (if x1[-0.5,-0.499] there is no x2 satisfying c)

x2

x1

x1 = 0 x1 = x2

0 0.5 1.5

0.5

1.5

x
1



(B) = {0}[0.5,1.0] 

x
2



(B) = [0.5..1.0]

c  x1(x2-x1) = 0

P = (X,D,C) = (<x1,x2>,D1D2,{c}) 

D1=[-1..3] D2 =[-0.5..2] 

B =<[-0.5..2.5],[0.5..1.5]>

 = { <x1,x2>D | x1(x2-x1) = 0 }

c = (<x1,x2>,)

B

B=<[-0.5..1.5],[0.5..1.5]>

A=<[0.0..1.5],[0.5..1.5]>

A is hull-consistent (Ihull(x1

(A))=A[x1] and Ihull(x2

(A))=A[x2])
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Consistency Enforcement

Hull-Consistency

Hull-consistency can only be enforced on primitive constraints

where the hull approximation of the projection function can be

obtained using extended interval arithmetic and union hull

operations to avoid multiple disjoint F-intervals

The major drawback of any decomposition approach is the

worsening of the dependency problem:
the satisfaction of a local property on each constraint does not imply the

existence of value combinations satisfying simultaneously all of them

Hull-consistency enforcement is particularly ineffective if the

original constraints contain multiple occurrences of variables
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Consistency Enforcement

Box-Consistency

The drawbacks of the decomposition approach motivated the

constraint Newton method, which can be applied directly to

complex constraints

A constraint is said to be box-consistent wrt an F-box iff, for each

bound of the F-interval representing the domain of a variable there

is a box (bound+other F-intervals) that satisfies the interval

projection condition:

Box-Consistency. Let P=(X,D,C) be a CCSP. Let c=(s,) be a constraint of the CCSP 

(cC) expressed in the form ec⋄0 (with ⋄{,=,} and ec a real expression). Let FE be 

an interval expression representing an interval extension F of the real function 

represented by ec. Let B be an F-box which is an element of the power set of D (B2
D
). c 

is box-consistent wrt B and FE iff: 

xis r1FE(B1) r1⋄0  r2FE(B2) r2⋄0 

where B1 and B2 are two F-boxes such as: 

B1[xi]=cleft(B[xi]), B2[xi]=cright(B[xi]) and xjs (xjxiB1[xj]=B2[xj]=B[xi]).  

2 Dec 2015



Lecture 5: Constraint Propagation and Consistency Enforcement 19

Consistency Enforcement

Example

B is not box-consistent (0[-0.5,-0.499]([0.5,1.5]-[-0.5,-0.499])=[-1,-0.498])

x2

x1

x1 = 0 x1 = x2

0 0.5 1.5

0.5

1.5

x
1



(B) = {0}[0.5,1.0] 

x
2



(B) = [0.5..1.0]

c  x1(x2-x1) = 0

P = (X,D,C) = (<x1,x2>,D1D2,{c}) 

D1=[-1..3] D2 =[-0.5..2] 

B =<[-0.5..2.5],[0.5..1.5]>

 = { <x1,x2>D | x1(x2-x1) = 0 }

c = (<x1,x2>,)

B

B=<[-0.5..1.5],[0.5..1.5]>

A=<[0.0..1.5],[0.5..1.5]>

A is box-consistent:
0[0..0.001]([0.5..1.5]-[0..0.001]) and 0[1.499..1.5]([0.5..1.5]-[1.499..1.5])

0[0..1.5]([0.5..0.501]-[0..1.5]) and 0[0..1.5]([1.499..1.5]-[0..1.5])
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Consistency Enforcement

Box-Consistency

Although box-consistency is weaker than hull-consistency for the

same constraint, the enforcement of box-consistency may achieve

better pruning since it may be directly applied to complex constraints

For primitive constraints box-consistency and hull-consistency are

equivalent (with infinite precision)

For complex constraints box-consistency is stronger than hull-

consistency applied on the primitive constraints obtained by

decomposition
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Consistency Enforcement

Generalising the concept of local consistency from a constraint to

the set of constraints:
a CCSP is locally consistent (interval, hull or box-consistent) wrt a set A of

real valued combinations iff all its constraints are locally consistent wrt A

Since the propagation algorithm obtains the greatest common

fixed-point (of the monotonic narrowing functions) included in the

original domains, then applying it to a set A results in the largest

subset A’A for which each constraint is locally consistent.

Local-Consistency. Let P=(X,D,C) be a CCSP. Let A be an element of the power set of 

D (A2
D
). P is locally-consistent wrt A iff:  

cC  c is locally-consistent wrt A 

Let S be a set of monotonic narrowing functions associated with the constraints in C 

which enforce a particular local consistency by constraint propagation: 

P is locally-consistent wrt prune(S,A) 

A’A (P is locally-consistent wrt A’  A’ prune(S,A))  

Local Consistency and Higher Order Consistencies
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Consistency Enforcement

When only local consistency techniques are applied to non-trivial

problems the achieved reduction of the search space is often poor

Local Consistency and Higher Order Consistencies

 

Initial box 

Smallest box enclosing all 

solutions within the initial box 

Box obtained by enforcing a local 

consistency on the initial box 

x1 

x2 

-5 
-5 

5 

5 

c1x1
2+x2

2220 c2(x11)2+(x21)22.520.
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Consistency Enforcement

Better pruning of the variable domains may be achieved if,

complementary to a local property, some (global) properties are

also enforced on the overall constraint set

Higher order consistency types used in continuous domains are

approximations of strong k-consistency (with k>2) restricted to the

bounds of the variable domains:

Local Consistency and Higher Order Consistencies

A CSP is k-consistent (k2) iff any consistent instantiation of k-1

variables can be extended by instantiating any of the remaining variables.

A CSP is strongly k-consistent if it is i-consistent for all ik.

Strong 2-consistency corresponds to arc-consistency and

hull-consistency is an approximation of strong 2-consistency

restricted to the bounds of the variable domains
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Consistency Enforcement

3B-consistency and Bound-consistency, are generalisations of hull

and box-consistency respectively:
if the domain of one variable is reduced to one of its bounds then the obtained

F-box must contain a sub-box for which the CCSP is locally consistent.

Local Consistency and Higher Order Consistencies

The following is a generic definition for the consistency types used

in continuous domains (local consistency is just a special case with k=2):

kB-Consistency. Let P=(X,D,C) be a CCSP. Let A be an element of the power set of D 

(A2
D
) and k an integer number.  

P is 2B-Consistent wrt A iff P is locally-consistent wrt A  

k>2 P is kB-Consistent wrt A iff  

xiX   A1B1
 P is (k-1)B-Consistent wrt A1  A2B2

 P is (k-1)B-Consistent wrt A2 

where B1 and B2 are two elements of the power set of D such that: 

B1[xi]=cleft(B[xi]), B2[xi]=cright(B[xi]) and xjX (xjxiB1[xj]=B2[xj]=B[xi]).  
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Consistency Enforcement

The algorithms to enforce higher order consistencies interleave

constraint propagation with search techniques

Local Consistency and Higher Order Consistencies

The growth in computational cost of the enforcing algorithm limits

the practical applicability of such criteria
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Consistency Enforcement

Local Consistency and Higher Order Consistencies

All the consistency criteria used in continuous domains, either

local or higher order consistencies, are partial consistencies

The adequacy of a partial consistency for a particular CCSP must

be evaluated taking into account the trade-off between the pruning

it achieves and its execution time

It is necessary to be aware that the filtering process is performed

within a larger procedure for solving the CCSP and it may be

globally advantageous to obtain faster, if less accurate, results
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