
24 Nov 2015 Lecture 4: Associating Narrowing Functions to Constraints 1

Associating Narrowing Functions

to Constraints

Jorge Cruz
DI/FCT/UNL

Nov 2015

Lecture 4: Associating Narrowing Functions to Constraints 2

Projection Function and its Enclosure

Associating Narrowing Functions to Constraints

Complementary Approaches

Constraint Newton Method

Projection Function Enclosure with the Interval Projection

Properties of an Interval Projection

Interval Projections

Inverse Functions

Primitive Constraints

Constraint Decomposition Method

Projection Function Enclosure with the Inverse Function

24 Nov 2015

Lecture 4: Associating Narrowing Functions to Constraints 3

Projection Function and its Enclosure

A set of narrowing functions is associated with a constraint by

considering projections with respect to each variable in the scope

A projection function identifies from a box:

all the possible values of a particular variable for which there is

a value combination belonging to the constraint relation

Projection Function. Let P=(X,D,C) be a CCSP. The projection function with respect to

a constraint c=(s,)C and a variable xis, denoted xi


, obtains a set of real values from

a real box B and is defined by:

xi


(B) = { d[xi] | d   d  B } = (  B)[xi] 

All value combinations within B with xi values outside xi

(B) are

outside the relation  and so they do not satisfy the constraint c.

24 Nov 2015

Lecture 4: Associating Narrowing Functions to Constraints 4

Projection Function and its Enclosure

x2

x1

x1 = 0 x1 = x2

B

0 0.5 1.5

0.5

1.5

x
1


(B) = {0}  [0.5..1.5]

x
2


(B) = [0.5..1.5]

c  x1(x2-x1) = 0

P = (X,D,C) = (<x1,x2>,D1D2,{c})

D1=[-1..3] D2 =[-0.5..2]

B =<[-0.5..2.5],[0.5..1.5]>

 = { <x1,x2>D | x1(x2-x1) = 0 }

c = (<x1,x2>,)

All value combinations within B with xi values outside xi

(B) are

outside the relation  and so they do not satisfy the constraint c.

24 Nov 2015

Lecture 4: Associating Narrowing Functions to Constraints 5

Projection Function and its Enclosure

A box-narrowing function narrows the domain of one variable,

from a box representing all the variables of the CCSP, eliminating

some values that do not belong to a projection function

Correctness follows from xi

(B[s])  I1  …  Im (the eliminated

combinations have xi values outside the projection function)

Box-Narrowing Function. Let P=(X,D,C) be a CCSP (with X=<x1,…,xi,…,xn>). A box-

narrowing function with respect to a constraint (s,)C and a variable xis is a mapping,

denoted BNFxi


, that relates any F-box B=<Ix1

,…, Ixi
,…, Ixn

> (BD) with the union of m

(1m) F-boxes, defined by:

BNFxi


(<Ix1

,…, Ixi
,…, Ixn

>) = <Ix1
,…, I1,…, Ixn

>  …  <Ix1
,…, Im,…, Ixn

>

satisfying the property:

 xi


(B[s])  I1  …  Im  Ixi

 

Contractance follows from I1…Im  Ixi
(the only changed

domain is smaller than the original)

24 Nov 2015

Lecture 4: Associating Narrowing Functions to Constraints 6

Constraint Decomposition Method

Decomposition of complex constraints into an equivalent set of

primitive constraints whose projection functions can be easily

computed by inverse functions

A set of primitive constraints can be easily obtained from any non-

primitive constraint:

A constraint may be decomposed by considering new variables and new

equality constraints

The whole set of primitives may be obtained by repeating this process

until all constraints are primitive

Primitive Constraints

Primitive Constraint. Let ec be a real expression with at most one basic operator and

with no multiple occurrences of its variables. Let e0 be a real constant or a real variable

not appearing in ec. The constraint c is a primitive constraint iff it is expressed as:

ec ⋄ e0 with ⋄  {,=,} 

24 Nov 2015

Lecture 4: Associating Narrowing Functions to Constraints 7

Constraint Decomposition Method

Primitive Constraints
x2

x1

x1 = 0 x1 = x2

B

0 0.5 1.5

0.5

1.5

x
1


(B) = {0}  [0.5..1.5]

x
2


(B) = [0.5..1.5]

c  x1(x2-x1) = 0

P = (X,D,C) = (<x1,x2>,D1D2,{c})

D1=[-1..3] D2 =[-0.5..2]

B =<[-0.5..2.5],[0.5..1.5]>

 = { <x1,x2>D | x1(x2-x1) = 0 }

c = (<x1,x2>,)

The constraint c is not primitive since it contains two basic

arithmetic operators and the variable x1 occurs twice

24 Nov 2015

Lecture 4: Associating Narrowing Functions to Constraints 8

Constraint Decomposition Method

Primitive Constraints
x2

x1

x1 = 0 x1 = x2

B

0 0.5 1.5

0.5

1.5

x
1


(B) = {0}  [0.5..1.5]

x
2


(B) = [0.5..1.5]

c  x1(x2-x1) = 0

P = (X,D,C) = (<x1,x2>,D1D2,{c})

D1=[-1..3] D2 =[-0.5..2]

B =<[-0.5..2.5],[0.5..1.5]>

 = { <x1,x2>D | x1(x2-x1) = 0 }

c = (<x1,x2>,)

a new variable x3 is introduced and c is replaced by c1 and c2

P’=(<x1,x2,x3>,D1D2[-..+],{c1,c2})

the domain of x3 is unbounded defining a new equivalent CCSP P’

c1 x1x3=0

c2 x2-x1=x3

24 Nov 2015

Lecture 4: Associating Narrowing Functions to Constraints 9

Constraint Decomposition Method

Inverse Functions

Inverse Interval Expression. Let c=(s,) be a primitive constraint expressed in the form

ec⋄e0 where ece1 or ec(e1,…,em) ( is an m-ary basic operator and ei a variable from s

or a real constant). The inverse interval expression of c with respect to ei, denoted ei, is

the natural interval expression of the expression obtained by solving algebraically, wrt ei,

the equality ec=e0 if c is an equality or ec=e0+k if c is an inequality (with k0 for

inequalities of the form ece0 and k0 for inequalities of the form ece0). 

 e1 e2 e3

⋄{,=,}

e1+e2⋄e3 (E3+K)-E2 (E3+K)-E1 (E1+E2)-K ei is a real variable or a real constant

e1-e2⋄e3 (E3+K)+E2 E1-(E3+K) (E1-E2)-K Ei is the natural interval extension of ei

e1e2⋄e3 (E3+K)/E2 (E3+K)/E1 (E1E2)-K [-..0] if ⋄  

e1/e2⋄e3 (E3+K)E2 E1/(E3+K) (E1/E2)-K
K= [0..0] if ⋄  =

e1⋄e2 (E2+K) E1-K [0..+] if ⋄  

24 Nov 2015

Lecture 4: Associating Narrowing Functions to Constraints 10

Constraint Decomposition Method
Inverse Functions

x2

x1

x1 = 0 x1 = x2

B

0 0.5 1.5

0.5

1.5

x
1


(B) = {0}  [0.5..1.5]

x
2


(B) = [0.5..1.5]

c  x1(x2-x1) = 0

P = (X,D,C) = (<x1,x2>,D1D2,{c})

D1=[-1..3] D2 =[-0.5..2]

B =<[-0.5..2.5],[0.5..1.5]>

 = { <x1,x2>D | x1(x2-x1) = 0 }

c = (<x1,x2>,)

P’=(<x1,x2,x3>,D1D2[-..+],{c1,c2})

c1 x1x3=0

c2 x2-x1=x3

 e1 e2 e3

x1x3=0 0/X3 0/X1 X1X3

x2-x1=x3 X3+X1 X2-X3 X2-X1

The inverse interval expressions are associated with the primitive

constraints of the decomposed CCSP P’

24 Nov 2015

Lecture 4: Associating Narrowing Functions to Constraints 11

Constraint Decomposition Method

Projection Function Enclosure with the Inverse Function

Projection Function based on the Inverse Interval Expression. Let P=(X,D,C) be a

CCSP. Let c=(s,)C be an n-ary primitive constraint expressed in the form ec⋄e0 where

ece1 or ec(e1,…,em) (with  an m-ary basic operator and ei a variable from s or a real

constant). Let xi be the inverse interval expression of c with respect to the variable xi (ei

 xi). The projection function xi


 of the constraint c wrt variable xi is the mapping:

xi


(B) = xi(B)  B[xi] where B is an n-ary real box 

The inverse interval expression wrt a variable allows the definition

of the projection function of the constraint wrt to that variable

x1x3=0 x2-x1=x3

x1


(<I1,I3>) = (0/I3)  I1

 x1


(<I1,I2,I3>) = (I2-I3)  I1

x3


(<I1,I3>) = (0/I1)  I3

 x2


(<I1,I2,I3>) = (I3+I1)  I2

 x3


(<I1,I2,I3>) = (I2-I1)  I3

24 Nov 2015

Lecture 4: Associating Narrowing Functions to Constraints 12

Constraint Decomposition Method
Projection Function Enclosure with the Inverse Function

x2

x1

x1 = 0 x1 = x2

B

0 0.5 1.5

0.5

1.5

x
1


(B) = {0}  [0.5..1.5]

x
2


(B) = [0.5..1.5]

c  x1(x2-x1) = 0

P = (X,D,C) = (<x1,x2>,D1D2,{c})

D1=[-1..3] D2 =[-0.5..2]

B =<[-0.5..2.5],[0.5..1.5]>

 = { <x1,x2>D | x1(x2-x1) = 0 }

c = (<x1,x2>,)

P’=(<x1,x2,x3>,D1D2[-..+],{c1,c2})

c1 x1x3=0

c2 x2-x1=x3

 e1 e2 e3

x1x3=0 0/X3 0/X1 X1X3

x2-x1=x3 X3+X1 X2-X3 X2-X1

NF1 BNFx1


(<I1,I2,I3>) = <(0/I3)  I1,I2,I3>

x1x3=0
NF2 BNFx3


(<I1,I2,I3>) = <I1,I2,(0/I1)  I3>

 NF3 BNFx1


(<I1,I2,I3>) = <(I2-I3)  I1,I2,I3>

x2-x1=x3 NF4 BNFx2


(<I1,I2,I3>) = <I1,(I3+I1)  I2,I3>

 NF5 BNFx3


(<I1,I2,I3>) = <I1,I2,(I2-I1)  I3>

Box-narrowing functions

are associated with the

decomposed CCSP P’

24 Nov 2015

Lecture 4: Associating Narrowing Functions to Constraints 13

Constraint Decomposition Method

Example

with B =<[-0.5,2.5],[0.5,1.5]> no pruning would be obtained:

x2

x1

x1 = 0 x1 = x2

B

0 0.5 1.5

0.5

1.5

x
1



(B) = {0}  [0.5..1.5]

x
2



(B) = [0.5..1.5]

c  x1(x2-x1) = 0

P = (X,D,C) = (<x1,x2>,D1D2,{c})

D1=[-1..3] D2 =[-0.5..2]

B =<[-0.5..2.5],[0.5..1.5]>

 = { <x1,x2>D | x1(x2-x1) = 0 }

c = (<x1,x2>,)

c1 x1x3=0

c2 x2-x1=x3

P’=(<x1,x2,x3>,D1D2[-..+],{c1,c2})

B’=<[-0.5,2.5],[0.5,1.5]> and x3=[-2.0,2.0]

B’= NF1(<I1,I2,I3>) = <(0/I3)  I1,I2,I3>

NF2(<I1,I2,I3>) = <I1,I2,(0/I1)  I3>

NF3(<I1,I2,I3>) = <(I2-I3)  I1,I2,I3>

NF4(<I1,I2,I3>) = <I1,(I3+I1)  I2,I3>

NF5(<I1,I2,I3>) = <I1,I2,(I2-I1)  I3>

24 Nov 2015

Lecture 4: Associating Narrowing Functions to Constraints 14

Constraint Decomposition Method

Example

with B =<[0.25,1.0],[0.5,1.5]> the best narrowing is obtained:

x2

x1

x1 = 0 x1 = x2

B

0 0.5 1.5

0.5

1.5

x
1



(B) = [0.5,1.0]

x
2



(B) = [0.5..1.0]

c  x1(x2-x1) = 0

P = (X,D,C) = (<x1,x2>,D1D2,{c})

D1=[-1..3] D2 =[-0.5..2]

B =<[-0.5..2.5],[0.5..1.5]>

 = { <x1,x2>D | x1(x2-x1) = 0 }

c = (<x1,x2>,)

c1 x1x3=0

c2 x2-x1=x3

P’=(<x1,x2,x3>,D1D2[-..+],{c1,c2})

B’=<[0.5,1.0],[0.5,1.0]> and x3=[0.0,0.0]

B’

NF1(<I1,I2,I3>) = <(0/I3)  I1,I2,I3>

NF2(<I1,I2,I3>) = <I1,I2,(0/I1)  I3>

NF3(<I1,I2,I3>) = <(I2-I3)  I1,I2,I3>

NF4(<I1,I2,I3>) = <I1,(I3+I1)  I2,I3>

NF5(<I1,I2,I3>) = <I1,I2,(I2-I1)  I3>

24 Nov 2015

Lecture 4: Associating Narrowing Functions to Constraints 15

Constraint Decomposition Method

Example

with B =<[-1.0,0.25],[0.5,1.5]> the best narrowing is also

obtained:

x2

x1

x1 = 0 x1 = x2

B

0 0.5 1.5

0.5

1.5

x
1



(B) = [0.0,0.0]

x
2



(B) = [0.5..1.0]

c  x1(x2-x1) = 0

P = (X,D,C) = (<x1,x2>,D1D2,{c})

D1=[-1..3] D2 =[-0.5..2]

B =<[-0.5..2.5],[0.5..1.5]>

 = { <x1,x2>D | x1(x2-x1) = 0 }

c = (<x1,x2>,)

c1 x1x3=0

c2 x2-x1=x3

P’=(<x1,x2,x3>,D1D2[-..+],{c1,c2})

B’=<[0.0,0.0],[0.5,1.5]> and x3=[0.5,1.5]

B’

NF1(<I1,I2,I3>) = <(0/I3)  I1,I2,I3>

NF2(<I1,I2,I3>) = <I1,I2,(0/I1)  I3>

NF3(<I1,I2,I3>) = <(I2-I3)  I1,I2,I3>

NF4(<I1,I2,I3>) = <I1,(I3+I1)  I2,I3>

NF5(<I1,I2,I3>) = <I1,I2,(I2-I1)  I3>

24 Nov 2015

Lecture 4: Associating Narrowing Functions to Constraints 16

Constraint Decomposition Method

Example

with B =<[-1.0,-0.25],[0.5,1.5]> inconsistency is proved:

x2

x1

x1 = 0 x1 = x2

B

0 0.5 1.5

0.5

1.5

x
1



(B) = 

x
2



(B) = 

c  x1(x2-x1) = 0

P = (X,D,C) = (<x1,x2>,D1D2,{c})

D1=[-1..3] D2 =[-0.5..2]

B =<[-0.5..2.5],[0.5..1.5]>

 = { <x1,x2>D | x1(x2-x1) = 0 }

c = (<x1,x2>,)

c1 x1x3=0

c2 x2-x1=x3

P’=(<x1,x2,x3>,D1D2[-..+],{c1,c2})

B’= 

B’=

NF1(<I1,I2,I3>) = <(0/I3)  I1,I2,I3>

NF2(<I1,I2,I3>) = <I1,I2,(0/I1)  I3>

NF3(<I1,I2,I3>) = <(I2-I3)  I1,I2,I3>

NF4(<I1,I2,I3>) = <I1,(I3+I1)  I2,I3>

NF5(<I1,I2,I3>) = <I1,I2,(I2-I1)  I3>

24 Nov 2015

Lecture 4: Associating Narrowing Functions to Constraints 17

Constraint Newton Method

Complex constraints are handled without decomposition using a

technique based on the interval Newton method for searching the

zeros of univariate functions

Interval Projections

Interval Projection. Let P=(X,D,C) be a CCSP. Let c=(s,)C be an n-ary constraint

expressed in the form ec⋄0 (with ⋄{,=,} and ec a real expression). Let B be an n-ary

F-box. The interval projection of c wrt xis and B is the function, denoted xi

B
,

represented by the expression obtained by replacing in ec each real variable xj (xjxi) by

the interval constant B[xj]. 

24 Nov 2015

Lecture 4: Associating Narrowing Functions to Constraints 18

Constraint Newton Method

x2

x1

x1 = 0 x1 = x2

B

0 0.5 1.5

0.5

1.5

x
1


(B) = {0}  [0.5..1.5]

x
2


(B) = [0.5..1.5]

c  x1(x2-x1) = 0

P = (X,D,C) = (<x1,x2>,D1D2,{c})

D1=[-1..3] D2 =[-0.5..2]

B =<[-0.5..2.5],[0.5..1.5]>

 = { <x1,x2>D | x1(x2-x1) = 0 }

c = (<x1,x2>,)

All value combinations within B with xi values outside xi

(B) are

outside the relation  and so they do not satisfy the constraint c.

Interval Projections

x1

B x1([0.5..1.5]-x1)

x2

B [-0.5..2.5](x2-[-0.5..2.5])

24 Nov 2015

Lecture 4: Associating Narrowing Functions to Constraints 19

Constraint Newton Method

Properties of an Interval Projection

From the properties of the interval projections, a strategy is

devised for obtaining an enclosure of the projection function

Properties of the Interval Projection. Let P=(X,D,C) be a CCSP. Let c=(s,)C be an

n-ary constraint expressed in the form ec⋄0 (with ⋄{,=,} and ec a real expression)

and B an n-ary F-box. Let xi

B
 be the interval projection of c wrt variable xis and B.

The following property is necessarily satisfied:

 rB[xi] rxi


(B)  vxi

B
([r]): v⋄0

We will say that a real value r satisfies the interval projection condition if the right side

of the implication is satisfied. 

24 Nov 2015

Lecture 4: Associating Narrowing Functions to Constraints 20

Constraint Newton Method

x2

x1

x1 = 0 x1 = x2

B

0 0.5 1.5

0.5

1.5

x
1


(B) = {0}  [0.5..1.5]

x
2


(B) = [0.5..1.5]

c  x1(x2-x1) = 0

P = (X,D,C) = (<x1,x2>,D1D2,{c})

D1=[-1..3] D2 =[-0.5..2]

B =<[-0.5..2.5],[0.5..1.5]>

 = { <x1,x2>D | x1(x2-x1) = 0 }

c = (<x1,x2>,)

r[-0.5,2.5] rx1

(B)  v [r]([0.5..1.5]-[r]): v=0

Properties of an Interval Projection

x1

B x1([0.5..1.5]-x1)

x2

B [-0.5..2.5](x2-[-0.5..2.5])

r[0.5,1.5] rx2

(B)  v [-0.5..2.5]([r]-[-0.5..2.5]): v=0

24 Nov 2015

Lecture 4: Associating Narrowing Functions to Constraints 21

Constraint Newton Method

Projection Function Enclosure with the Interval Projection

The strategy used in the constraint Newton method is to search for

the leftmost and the rightmost elements of the original variable

domain satisfying the interval projection condition

Projection Function Enclosure based on the Interval Projection. Let P=(X,D,C) be a

CCSP. Let c=(s,)C be an n-ary constraint, B an n-ary F-box and xi an element of s. Let

a and b be respectively the leftmost and the rightmost elements of B[xi] satisfying the

interval projection condition. The following property necessarily holds:

xi


(B)  [a..b] 

What is needed is a function, denoted narrowBounds, with the

following property:

xi

(B)  [a..b]  narrowBounds(B[xi])

24 Nov 2015

Lecture 4: Associating Narrowing Functions to Constraints 22

Constraint Newton Method

Projection Function Enclosure with the Interval Projection

To obtain a new bound, the projection condition is firstly verified

in the extreme of the original domain and only in case of failure

the leftmost (rightmost) zero of the interval projection is searched

function narrowBounds(an F-interval [a..b])

 (1) if a = b then if intervalProjCond([a]) then return [a] else return ; end if; end if;

 (2) if not intervalProjCond([a..a+]) then a  searchLeft([a+..b]);
 (3) if a =  then return ;
 (4) if a = b then return [b];

 (5) if not intervalProjCond([b-..b]) then b  searchRight([a..b-]);
 (6) return [a..b];

end function

In case of failure of an inequality condition, it assumes that the

leftmost (rightmost) element satisfying the interval projection

condition must be a zero of the interval projection

24 Nov 2015

Lecture 4: Associating Narrowing Functions to Constraints 23

Constraint Newton Method

Projection Function Enclosure with the Interval Projection

The verification if the interval projection condition is satisfied in a

canonical interval is straightforward

function intervalProjCond(a canonical F-interval I)

 (1) [a..b]  xi

B

(I);

 (2) case ⋄ of

 (3) “=”: return 0[a..b];

 (4) “”: return a0;

 (5) “”: return b0;

 (6) end case;

end function

24 Nov 2015

Lecture 4: Associating Narrowing Functions to Constraints 24

Constraint Newton Method

Projection Function Enclosure with the Interval Projection

The algorithm for searching for the leftmost zero of an interval

projection uses a Newton Narrowing function (NN) associated

with the interval projection for reducing the search space

function searchLeft(an F-interval I)

 (1) Q  {I};

 (2) while Q   do

 (3) choose I1  Q with the smallest left bound (IQ left(I1) left(I));

 (4) Q  Q \ {I1};

 (5) if 0xi

A

(I1) then

 (6) I1  NN(I1);

 (7) if I1   then

 (8) I0  cleft(I1); I1  [right(I0)..right(I1)];

 (9) if 0xi

B

(I0) then return left(I0);

 (10) else Q  Q  {[left(I1)..center(I1)], [center(I1) ..right(I1)]}; end if;

 (11) end if;

 (12) end if;

 (13) end while;

 (14) return ;

end function

24 Nov 2015

Lecture 4: Associating Narrowing Functions to Constraints 25

Constraint Newton Method

x2

x1

x1 = 0 x1 = x2

B

0 0.5 1.5

0.5

1.5

x
1


(B) = {0}  [0.5..1.5]

x
2


(B) = [0.5..1.5]

c  x1(x2-x1) = 0

P = (X,D,C) = (<x1,x2>,D1D2,{c})

D1=[-1..3] D2 =[-0.5..2]

B =<[-0.5..2.5],[0.5..1.5]>

 = { <x1,x2>D | x1(x2-x1) = 0 }

c = (<x1,x2>,)

Narrowing the domain of variable x1: narrowBounds([-0.5,2.5])

Example

x1

B x1([0.5..1.5]-x1)

x2

B [-0.5..2.5](x2-[-0.5..2.5])

intervalProjCond([-0.5,-0.499])  False 0x1

B([-0.5,-0.499])=[-1,-0.499]

24 Nov 2015

18 March 2011 Lecture 4: Associating Narrowing Functions to Constraints 26

Constraint Newton Method

x2

x1

x1 = 0 x1 = x2

B

0 0.5 1.5

0.5

1.5

x
1


(B) = {0}  [0.5..1.5]

x
2


(B) = [0.5..1.5]

c  x1(x2-x1) = 0

P = (X,D,C) = (<x1,x2>,D1D2,{c})

D1=[-1..3] D2 =[-0.5..2]

B =<[-0.5..2.5],[0.5..1.5]>

 = { <x1,x2>D | x1(x2-x1) = 0 }

c = (<x1,x2>,)

Example

x1

B x1([0.5..1.5]-x1)

x2

B [-0.5..2.5](x2-[-0.5..2.5])

searchLeft([-0.499..2.5])

Q={I1,...,In} 0x
i

B

(I1) NN(I1) 0x
i

B

(I0)

{[-0.499..2.5]} 0[-5..4.998] [-0.499..2.5] 0[-0.998.. -0.497]

{[-0.498..1.001],[1.001..2.5]} 0[-0.995..2] [-0.498..1.001] 0[-0.997.. -0.496]

{[-0.497..0.252],[0.252..1.001],[1.001..2.5]} 0[-0.992..0.504] [0..0.001] 0[0..0.002]

 return 0

 24 Nov 2015 Lecture 4: Associating Narrowing Functions to Constraints 26

Lecture 4: Associating Narrowing Functions to Constraints 27

Constraint Newton Method

x2

x1

x1 = 0 x1 = x2

B

0 0.5 1.5

0.5

1.5

x
1


(B) = {0}  [0.5..1.5]

x
2


(B) = [0.5..1.5]

c  x1(x2-x1) = 0

P = (X,D,C) = (<x1,x2>,D1D2,{c})

D1=[-1..3] D2 =[-0.5..2]

B =<[-0.5..2.5],[0.5..1.5]>

 = { <x1,x2>D | x1(x2-x1) = 0 }

c = (<x1,x2>,)

Example

x1

B x1([0.5..1.5]-x1)

x2

B [-0.5..2.5](x2-[-0.5..2.5])

Proceeding similarly for the upper bound of x1, the best narrowing is

obtained:
B’=<[0.0,1.501],[0.5,1.0]>

B’

24 Nov 2015

Lecture 4: Associating Narrowing Functions to Constraints 28

Complementary Approaches

A modification of the Newton method, is to use other interval

extensions of the projection function associated with a constraint

A modification of the decomposition method, transforms the

original set of constraints into an equivalent one where for each

constraint (not necessarily primitive) the inverse interval

expressions can be easily computed by interval arithmetic

Other modification is the introduction of a pre-processing phase

preceding the definitions of the box-narrowing functions to obtain

an equivalent CCSP (ex: introduction of redundant constraints)

24 Nov 2015

Lecture 4: Associating Narrowing Functions to Constraints 29

Complementary Approaches

Other variation is the development of an algorithm capable of

implementing a narrowing function for any constraint without

decomposing, with the same results as the decomposition method

A complementary approach take advantage of the way that a

complex constraint is expressed: An algorithm that does not

require decomposing complex constraints, makes it possible to

combine both basic methods, and choose either one or the other,

according to the form of the expression of the interval projection

Finally, some approaches consider narrowing functions capable of

narrowing several variable domains simultaneously (ex: based on

the multivariate interval Newton method)

24 Nov 2015

